Tag Archives: Let’s See How Long This Lasts Before It Gets Convincingly Shot Down

Semantic Arguments vs. Adjuncts (Revised)

This is a version of the post below, revised so as to try to eliminate a number of confusions.

The Wikipedia article Argument (linguistics) starts its discussion of the argument/adjunct distinction by asserting that an argument is what is demanded by a predicate to complete its meaning, while an adjunct is not so demanded.  For example, if someone asks me “What is Joe eating?” my answer would be drastically incomplete if I replied “eats.”  My answer would still be drastically incomplete if I supplied just one argument, ‘Joe’, to say ‘Joe eats.’  Only when I supply a second argument, say, ‘a fried egg’, would my reply not create a sense of a question ludicrously left hanging and an answer simply not given.  The predicate _eats_ has two parameters ( shown here as ‘_’) demanding two arguments, such as  ‘Joe’ and ‘a fried egg’ for my reply to make any sense.

( This example, of course, is my own; I am offering it (maybe tendentiously?) in order to make drawing certain conclusions more natural. )

‘[I]n the kitchen’, however, is an adjunct, since nothing would be left ludicrously left hanging in the air were I to leave that phrase out of the proposition “Joe eats a fried egg in the kitchen.”  The predicate eats does not have a parameter demanding something like ‘in the kitchen’ as an argument.

This criterion — i.e., what is demanded by a predicate to complete its meaning … henceforth I will call this the ‘demands criterion’ — runs into trouble when one notices that sometimes eats demands two arguments, but sometimes demands just one.  One might say:  “Joe goes into the kitchen.  Joe is ravenous.  Joe sees food.  Joe eats.”  ( Imagine a novelist or short-story writer working in a certain style.)  The argument ‘a fried egg’ is not demanded in this particular piece of discourse.

But if ‘a fried egg’ is an argument, not an adjunct to eats, it would seem one would  have to abandon the ‘what is demanded by a predicate to complete its meaning’ criterion and find another criterion for what is to count as an argument and what is to count as an adjunct.  This a contributor (doubtlessly not the same person who put forward the ‘demands’ criterion) to the Wikipedia article cited above tries to do.

But if one wants to retain the demands criterion, they (I am intentionally using ‘they’ as a genderless singular pronoun) can assert that two different predicates, each with a different number of parameters, may get invoked when someone utters  ‘eats’ in a stretch of discourse.  Sometimes the one-place predicate _ eats is invoked, sometimes the two-place predicate _eats_.   Which predicate one uses is optional, depending upon what they feel is called for by the situation and what they want to do with the predicate.  Sometimes the context forces one to use, for example, the two-placed predicate (for example, in answer to the question ‘Joe is eating what?’; sometimes which predicate one invokes is purely a matter of choice.

If all of the predicates demand a certain argument (for example, ‘Joe’ in ‘Joe eats’), what is so demanded is an argument that is not also an adjunct.  If not all of the predicates demand a given argument (‘fried egg’, ‘in the kitchen’), that argument is an adjunct.  In this way, the demands criterion is rescued.

I picture the relations formed by these predicates as follows:

One-place relation formed by _eats:

EATS
PERSON_EATING
PERSON( NAME(‘Joe’) )
PERSON( NAME(‘Khadija’) )
PERSON( NAME(‘Juan’) )
PERSON( NAME(‘Kha’) )
PERSON( NAME(‘Cliff’) )

Here the key is, of course, PERSON_EATING.  The ellipses ‘…’ indicate all the further tuples needed to make this relation satisfy the Closed World Assumption.  (The Closed World Assumption states that a relation contains all and only those tuples expressing the true propositions generated by completing the predicate with the relevant argument(s).)

Two-place relation formed by _eats_:

EATS
PERSON_EATING FOOD_ITEM_BEING_EATEN
PERSON( NAME(‘Joe’) ) FOOD_ITEM( NAME(‘This fried egg’) )
PERSON( NAME(‘Khadija’) ) FOOD_ITEM( NAME(‘This souffle’) )
PERSON( NAME(‘Juan’) ) FOOD_ITEM( NAME(‘This fajita’) )
PERSON( NAME(‘Kha’) ) FOOD_ITEM( NAME(‘This bowl of Pho’) )
PERSON( NAME(‘Cliff’) ) FOOD_ITEM( NAME(‘This plate of Thai food with a 5-star Thai-spicy rating’) )

Here the relation formed by _eats_ is a subtype of the supertype formed by _eats.  That is to say, PERSON_EATING is a unique key in this relation, but it is also a foreign key to the PERSON_EATING attribute of the relation formed by _eats.

This means of, course, that in each tuple there is just one thing that the person is eating.  This constraint would be natural enough if one restricts the now of the present tense eats enough so that only one thing could possibly be getting eaten, for example, the egg one piece of which Joe is now bringing to his mouth via a spoon.  But, of course, if one stretches out this now enough so that our hypothetical author could write:   “Joe goes into the kitchen.  Joe is ravenous.  Joe eats a fried egg, an apple, and a salad,” one could not treat the one-place relation as a subtype of the two-place relation.  I think the solution in this case would be to treat what gets eaten as a meal, a meal comprising one or more items.  The meal then could be treated relationally the way an order and its order-items get treated, the orders going into one relation, and orders and order-items going into another, with the orders and order-items together comprising a unique key.

The predicate _eats_ _ (as in ‘Joe eats the fried egg in the kitchen’) can be treated the same way.  And so on for any number of possible adjuncts that a predicate might accept.

If I can get away with this move, then, an adjunct would be any argument that is 1) accepted by a predicate in which the corresponding relation is a subtype of another relation, and 2) the parameter which takes that argument corresponds to an attribute in the subtype relation which is not a foreign key of the supertype relation.  An adjunct then is one kind of argument.  Non-adjunct arguments (arguments that are just arguments, arguments simpliciter) correspond to a unique key in a supertype relation; adjuncts in turn are arguments not corresponding to any attributes in the subtype relations that are foreign keys to that unique key in the supertype relation.

Notice how this treatment of arguments vs. adjuncts (that is to say, arguments that are just arguments and arguments that are also adjuncts) corresponds to the way “optional (nullable) columns” in SQL tables get turned into actual relations, which cannot contain “null values”:

SQL Table (what is eaten is an optional or “nullable value”):

EATS
PERSON_EATING FOOD_ITEM_BEING_EATEN
Joe  Fried egg
Khadija
Juan
Kha Bowl of Pho
Cliff
 …

Here PERSON_EATING is a not-null column, and FOOD_ITEM_BEING_EATEN is a “nullable” column.

This looks like a single relation with an optional parameter (FOOD_ITEM_BEING_EATEN).  So if one both accepts the demands criterion and takes the  SQL table as their cue, PERSON_EATING would be an argument because it is not optional, i.e., always demanded and FOOD_ITEM_BEING_EATEN would be an adjunct because it is optional.  But then one has no way of accounting for when FOOD_ITEM_BEING_EATEN isn’t optional — for example in answering the question ‘what is Joe eating’?  (Compare with the COMMISSION column in the EMP table of Oracle’s sample SCOTT schema when the employee is a salesman.)  One would either have to try to explain away — an impossible task? — the times when eats surely seems to demand not one, but two arguments, or they would have to give up the demands criterion as the way to distinguish between arguments and adjuncts.

But of course SQL is confused.  The SQL table above is mushing together two different relations, the relation formed by _eats and the relation formed by _eats_.  Disentangle the two relations, and you get a two-fer.  You get rid of the nulls, and you also rescue the demands criterion for distinguishing between arguments simpliciter and arguments that are adjuncts.

When you disentangle the relations, you can see that what is optional, when one is talking about adjuncts, is not the attribute value (e.g., fried egg), but which predicate one invokes when they say eats.  To put it a different way, the attribute value is optional only because the predicate is.

I submit, then, that treating a verb as invoking different predicates whose corresponding relations are involved in subtype/supertype relationships does away with the confusing situation that challenges the demands criterion:  i.e., the initially confusing fact that sometimes an argument seems to be demanded for the verb, and sometimes it seems not to be.

Today’s homage to Plato’s SYMPOSIUM is Channing Tatum (aka Magic Mike) again, as in the previous post.

Channing_Tatum_BlackAndWhite

How can anyone get anything done with such beauty walking the earth?

Advertisements

A Doubtlessly Lame Attempt At Explaining The Awkwardness

Caution:  The following belongs to the category of ‘let’s see how long I can get away with this before it convincingly gets shot down’.  Either that, or to the category ‘This is so obvious and has been stated so many times in the past that it is a puzzle why you bother mentioning it.’

The motivation for the following blather:  In a previous post I was bothered by the (I think true) assertion that one can reduce propositions to states of affairs…my botheration arising from the fact that while propositions are always either true or false, it seems awkward to say things like “Don’s standing to the right of Genghis Khan is a true state of affairs.”

The blather itself:  Let’s suppose that we could describe a state of affairs as either true state of affairs, or a false state of affairs, using the ‘state of affairs’ vocabulary, only if any state of affairs could be so described.  Not every state of affairs can be described as either true or false:  for example, “Guile riding his bicycle.”  This is a state of affairs that occurs at any given moment, when Guile is riding his bicycle at that moment, or that fails to occur at that moment; but it is neither true nor false.

So if we try to describe “Guile rode his bicycle a moment ago in Angeles” as a true (or false) state of affairs, we will be beating our head against the wall, for we will be using a vocabulary that cannot be applied to any state of affairs, but only to some of them.  So instead of beating our head against a brick wall, we will invent a new kind of thing:  propositions, which are either true or false.  And we will reduce propositions to states of affairs by saying propositions are nothing but a subset of the set of states of affairs, namely, those that always occur (or fail to occur).  (“Guile rode his bicycle a moment ago, i.e., at time t_1, in Angeles” is a state of affairs that will always occur if Guile did ride his bicycle during that time and at that place, or it is a state of affairs that will never occur.)

Conclusion:  This way we can reduce propositions to a subset of states of affairs without having to talk about true or false states of affairs.

My homage to Plato’s SYMPOSIUM for this post is Brad Pitt again:

Brad-Pitt-a-River-Runs-Through-It

How can anyone get anything done with beauty like that walking the earth?

 


Semantic vs. Syntactic Arguments

In a previous post, playing the role of a would-be ordinary-language philosopher working in Tagalog (which language, to the the total consternation and perplexity of the Spanish grammarians during the 1600s, lacks the verb ‘to be’), I tried to provoke the suspicion that there is no single relation IS that could be pictured as follows:

IS (0)
THING PROPERTY
NUMBER( NAME(‘3’) ) PROPERTY( NAME(‘Prime’) )
CAR( NAME(‘Car With Serial Number 1235813’) ) PROPERTY( NAME(‘Red’) )
FLOWER( NAME (‘Rose With Barcode 3185321’) ) PROPERTY( NAME(‘Beautiful’) )
MINERAL_ITEM( NAME(‘Grain Of Salt Mentioned By Hegel’) ) PROPERTY( NAME(‘Cubical’) )
MINERAL_ITEM( NAME(‘Grain Of Salt Mentioned By Hegel’) ) PROPERTY( NAME(‘White’) )

Contra John Duns Scotus, for example, there is no single relation ‘contracts’ holding between a universal existing as always-already contracted into a particular. (To back up for a moment, the property denoted by NAME(‘three-sided’)is the universal denoted by NAME(‘three-sidedness’)existing as already contracted into a particular triangle.) Nor is there any other single relation which we can identify with the verb ‘is’. Or … letting my Tagalog ordinary-language suspicions run wild for the moment … so I will suppose.

There is no semantic relation (we are supposing) between the particular thing and the particular property.  But there is a syntactic relation between two names, pictured as follows;

IS (0)
THING PROPERTY
NAME(‘3’) NAME(‘Prime’)
NAME(‘Car With Serial Number 1235813’) NAME(‘Red’)
NAME(‘Rose With Barcode 3185321’) NAME(‘Beautiful’)
NAME(‘Grain Of Salt Mentioned By Hegel’) NAME(‘Cubical’)
NAME(‘Grain Of Salt Mentioned By Hegel’) NAME(‘White’)

Voila:  here is the distinction between semantic vs. syntactical arguments to a verb aka predicate that puzzled me in an earlier post.  NAME(‘3’) and NAME(‘Prime’) are syntactic predicates to the verb/predicate ‘is’.  NUMBER( NAME(‘3’) ) and PROPERTY( NAME(‘Prime’) ) are the semantic predicates to the verb ‘is’ — or would be if there were such a verb ‘is’ that took semantic arguments.

In the spirit of ‘let’s see how long I can get away with this’, let me propose the following chain of events for verbs such as eats that do take semantic arguments.  Consider a relation like the one pictured here:

EATS (0)
NAME_OF_PERSON_EATING NAME_OF_FOOD_ITEM_BEING_EATEN
NAME(‘Joe’) NAME(‘This egg’)
NAME(‘Khadija’) NAME(‘This souffle’)
NAME(‘Juan’) NAME(‘This fajita’)
NAME(‘Kha’) NAME(‘This bowl of Pho’)
NAME(‘Cliff’) NAME(‘This plate of Thai food with a 5-star Thai-spicy rating’)

When used in ordinary discourse, rather than mentioned as sentences with whatever syntactic properties, these tuples with their syntactic arguments get transformed into the following tuples with their semantic arguments:

EATS (0)
PERSON_EATING FOOD_ITEM_BEING_EATEN
PERSON( NAME(‘Joe’) ) FOOD_ITEM( NAME(‘This egg’) )
PERSON( NAME(‘Khadija’) ) FOOD_ITEM( NAME(‘This souffle’) )
PERSON( NAME(‘Juan’) ) FOOD_ITEM( NAME(‘This fajita’) )
PERSON( NAME(‘Kha’) ) FOOD_ITEM( NAME(‘This bowl of Pho’) )
PERSON( NAME(‘Cliff’) ) FOOD_ITEM( NAME(‘This plate of Thai food with a 5-star Thai-spicy rating’) )

If we think of the intransitive and transitive verbs ‘eats’ as really being the same verb on the semantic level (though it is not clear to me that they are the same), ‘Joe eats’ would be ‘Joe eats something’.  We can derive the corresponding tuple from  the EATS relation first by projecting on the attribute PERSON_EATING:

EATS(1)
PERSON_EATING FOOD_ITEM_EATEN
PERSON( NAME(‘Joe’) ) FOOD_ITEM( NAME(‘This egg’) )
PERSON( NAME(‘Khadija’) ) FOOD_ITEM( NAME(‘This souffle’) )
PERSON( NAME(‘Juan’) ) FOOD_ITEM( NAME(‘This fajita’) )
PERSON( NAME(‘Kha’) ) FOOD_ITEM( NAME(‘This bowl of Pho’) )
PERSON( NAME(‘Cliff’) ) FOOD_ITEM( NAME(‘This plate of Thai food with a 5-star Thai-spicy rating’) )

Then by doing a RESTRICT on Joe:

EATS(2)
PERSON_EATING FOOD_ITEM_EATEN
PERSON( NAME(‘Joe’) ) FOOD_ITEM( NAME(‘This egg’) )
PERSON( NAME(‘Khadija’) ) FOOD_ITEM( NAME(‘This souffle’) )
PERSON( NAME(‘Juan’) ) FOOD_ITEM( NAME(‘This fajita’) )
PERSON( NAME(‘Kha’) ) FOOD_ITEM( NAME(‘This bowl of Pho’) )
PERSON( NAME(‘Cliff’) ) FOOD_ITEM( NAME(‘This plate of Thai food with a 5-star Thai-spicy rating’) )

The existence of verbs that are sometimes transitive, sometimes intransitive  is what motivated Santorini’s distinction between semantic and syntactic arguments to a verb.

Although I have labored over making this distinction for an embarrassing amount of time, it becomes quite easy to make once one has the notion of a SELECTOR available as a conceptual tool.

I’d like to mention as a final note that possibly we should think of the arguments of eats as always already nested inside the selectors PERSON and FOOD_ITEM; in other words, the names are always transparent, so to speak, letting us see through them the persons and food items, the semantic arguments, named.  It is only under special circumstances — say when the transparent denoting function of the sentence breaks down … maybe one has been staring at the sentence for too long — that the selectors PERSON and FOOD_ITEM get stripped away and we see the names, the syntactic arguments, doing the denoting.  (The sentences always seem to be breaking down this way for C.J. Date in his article “SOME OPERATORS ARE MORE EQUAL THAN OTHERS” in his LOGIC AND DATABASES:  THE ROOTS OF RELATIONAL THEORY.  I get the funny feeling that for him a sentence or expression functions normally at first, but when he stares at it too long it suddenly loses its transparency and becomes an opaque relation between names.  See pages 42 and 45, and see if you get the same impression.)  This final note has been brought to you by the balefully compromised spirit of Martin Heidegger, which was nagging me as I wrote the above.

And now, in the spirit of Plato’s SYMPOSIUM, I would like to picture something a little less dry than the pictures of Relations shown above.  Today it is Kellan Lutz who is serving as my stepping stone, first, to the Relational Algebra, then, finally, to the form of Beauty itself:

Kellan_Lutz

(Rapturous sigh.  How can one live in this world when there is so much beauty in it?)

Update 12/16/2012:  Corrected some errors in the names of some of the Relations; tried to improve the flow of the writing.


Selectors And Semantic vs. Syntactic Arguments

In case anyone wonders (“feel free to come to the point when you finally decide what it is”), the point of the following ramblings is to arrive at a place where I can make a distinction between semantic arguments and syntactic arguments.  The point of making this distinction will become clear (or not) in a later post.  Making the distinction is part of my attempting to put in my own words the argument that Tagalog lacks a subject.

In the previous post, I argued (or claimed, or made the completely unsupported, nay, spurious assertion, as the case may be) that the semantics of Maganda si Robert Pattinson can also be given by the following statement in the database language Tutorial D:

GORGEOUS_EQUALS_GORGEOUS{THIS_ONE, THAT_ONE} where THIS_ONE = PERSON(NAME(‘Robert Pattinson’))

This statement includes the Selector PERSON(NAME(‘Robert Pattinson’)).  Let me unpack a bit what this is. Before I start, I’d like to point out that I THINK that it is  legal in Tutorial D to nest one selector inside another…

NAME(‘Robert Pattinson’) is a operator or function that takes the string ‘Robert Pattinson’ and selects one and only one name.  I will take the concept ‘selects’ as primitive here.  Any implementation of this selector in a physical computer would involve shuffling around ones and zeros until the computer spits out, i.e., returns, one member of the set NAME.  NAME would include strings, but subject to certain limitations.  For example, I assume a  name would have to be, at least, less than 1 billion characters long.  NAME would also include more than strings (that is, representations of text):  a name can be selected by a sound.  So NAME(<<some representation of a sound>>) could also select the name Robert Pattinson. (The reader will notice that I have not yet decided on how to represent, in the absence of a formal selector, a name as opposed to a string as opposed to the person himself…)

PERSON(NAME(Robert Pattinson)) would take the name selected by NAME(‘Robert Pattinson’) and return a member of the set PERSONS, i.e., Robert Pattinson himself.  I don’t know how a computer would implement this operator, but a human being would be implementing that operator in the following type of circumstance:  say, I am sitting in a restaurant.  Someone in the table next to me says:

 I hereby officially declare myself to belong to Team Edward because Robert Pattinson is just too gorgeous.

One part of that utterance, the part that I hear as the word ‘Robert Pattinson’, is the end point of a long causal chain that begins, say, when the parents of Robert Pattinson, after endless wrangling and indecision, finally agree to call their baby ‘Robert’; the doctor in the Maternity Ward crosses out the ‘baby boy’ in ‘baby boy Pattinson’ and writes in  ‘Robert’ on the birth certificate (call this the ‘baptismal event’) … endless events … a director or producer chooses the person named by ‘Robert Pattinson’ to play Edward Cullen in TWILIGHT … endless events…the person sitting at the table next to me sees TWILIGHT…he reads in a magazine he buys at the supermarket that Robert Pattinson played the part of Edward Cullen…he emits a set of soundwaves at the table next to me, which in turn trigger God-only-knows what processes in my brain, until I hear ‘…Robert Pattinson….’  That entire causal chain, ending up in the wetware of my brain, selects the person Robert Pattinson.  THAT’s the implementation of the selector PERSON(NAME(<<some representation of certain sound waves>>)).  Speaking metaphorically and a bit picturesquely, the selector spits out, or returns, Robert Pattinson himself, the flesh-and-blood Robert Pattinson who lives in (I would say ‘Valencia, California’, but that is where Taylor Lautner lives)…. Speaking literally, the selector selects Robert Pattinson himself.

(See Saul Kripke, who apparently never explicitly endorsed this causal theory of reference aka selection.  Gareth Evans would apparently deem this theory, as stated by me, to be naive, but it seems perfectly intuitive to me.)

Invocations of selectors produce literals (more accurately, I guess, are literals).  So whatever else Robert Pattinson himself may be, he is a literal value.

Let me take the liberty of allowing selector invocations as arguments supplied to the parameters of functions, so that we can replace x with the argument PERSON(NAME(‘Robert Pattinson’)) in the function x EQUALS x to produce a true proposition.  Below, I have identified, ala Chisholm, propositions with states of affairs in the world:  here, with Robert Pattinson being identical with Robert Pattinson.  This proposition gives us the semantics of the utterance “Robert Pattinson equals Robert Pattinson.”

I will therefore call the invocation of PERSON(NAME(‘Robert Pattinson’)) a semantic argument.  By contrast, the invocation of NAME(‘Robert Pattinson’), occuring inside an utterance, spoken or written, is a syntactic argument.  In this way, I make sense of the semantic arguments vs. syntactic arguments distinction I puzzled over in a previous post.

I do not know, of course, whether this is the distinction that Beatrice Santorini wanted to make.

I will end by making another homage to Plato’s SYMPOSIUM, according to which interest in Robert Pattinson, Taylor Lautner, Kellan Lutz et al ultimately leads to interest in the Relational Algebra, and from there, to the Form of Beauty itself:

Robert_Pattinson_2

Wow, I love that slightly-unshaven look…(the reader may  hear a rapturous sigh…)

Now, having briefly lapsed into a lower form of eros, I will go back to eros for the Relational Algebra in connection with Semantics….

Update:  After hitting the publish button, I saw this quote from the first Jewish Prime Minister of Great Britain:

The best way to become acquainted with a subject is to write a book about it.

Benjamin Disraeli

Or blog about it at length.


Some Gorgeous One Equals Robert Pattinson

Below, I have argued that (or, more accurately, attempted to provoke the Aha Erlebniss that)  the following three Tagalog sentences:

Titser ang babae.

Maganda ang lalaki.

Umalis ang babae.

…have as their most literal translation something like the following:

Some teacher one  equals the woman.

Some gorgeous one equals the man.

Some having left one equals the woman.

How would these sentences be expressed in the Relational Algebra?  Let me try to express “Some beautiful one equals Robert Pattinson” (I am switching from Team Jacob to Team Edward for the moment) in the Relational Algebra.  (Notice I am switching from ‘the man’ to ‘Robert Pattinson’.  Can I get away with this?)

A relation is a set of ordered pairs formed by taking the Cartesian Product of two sets, not necessarily distinct, and obtaining a subset (possibly identical with the entire set) of the set of ordered pairs.  Let’s form a particular EQUALS relation, GORGEOUS_EQUALS_GORGEOUS, by taking the Cartesian Product of the set GORGEOUS with the set GORGEOUS, then take from that Product the set of all those ordered pairs in which each member of the pair is identical with the other.  So that the relation can be more easily manipulated (conceptually), add in all the stuff necessary to turn this relation into a database relation, complete with tuples and attributes and all that good stuff.

GORGEOUS_EQUALS_GORGEOUS(0)
THIS_ONE THAT_ONE
Robert Pattinson Robert Pattinson
Taylor Lautner Taylor Lautner
Kellan Lutz Kellan Lutz
Brad Pitt Brad Pitt
Ashton Kutchner Ashton Kutchner

Restrict GORGEOUS_EQUALS_GORGEOUS to just the Robert Pattinson tuple:

GORGEOUS_EQUALS_GORGEOUS{THIS_ONE, THAT_ONE} where THIS_ONE = PERSON(NAME(‘Robert Pattinson’))
More attention needs to be paid to the literal selector PERSON(NAME(‘Robert Pattinson’)).  Will my worries about this, unarticulated here, eventually blow up in my face?

To get the relation pictured by:

GORGEOUS_EQUALS_GORGEOUS(1a)
THIS_ONE THAT_ONE
Robert Pattinson Robert Pattinson

Now project on the attribute THAT_ONEi in addition to performing the RESTRICT:

GORGEOUS_EQUALS_GORGEOUS{THAT_ONE} where THIS_ONE = NAME(‘Robert Pattinson’)

To get the relation pictured by:

GORGEOUS_EQUALS_GORGEOUS(1)
THAT_ONE
Robert Pattinson

(Imagine the surrounding white space as regnant with the matrix from which this relation sprints, namely, the base relation GORGEOUS_EQUALS_GORGEOUS.)

The above relation expresses the proposition that is also expressed in English as:

Some gorgeous one equals Robert Pattinson.

and that is also expressed in Tagalog, I claim, as:

Maganda si Robert Pattinson.

So:

Maganda si Robert Pattinson.

Some gorgous one equals Robert Pattinson

have the same semantics.  (Well, would have the exact same semantics if ‘gorgeous’ were exactly equivalent to ‘maganda’, which of course may be doubtful.)

Now, in the spirit of Plato’s Symposium (eros for gorgeous  young men inspires eros for the Relational Algebra and the Predicate Logic, and from there to the Form of Beauty itself), let me picture some of the members of that set which inspires my forays into the Relational Algebra.  These pictures are a bit more colorful than the pictures of relations shown above.

Do I really have to choose between Team Edward and Team Jacob?

12/04/2012:  Updated to remove problematic assertions about the semantics of ‘is’.


The Mystery Of The Missing IS: Or, Had John Duns Scotus Been An Ordinary-Language Philosopher Working In Tagalog


Below, I have tried to start incubating the suspicion that there is something fishy about treating ‘is’ as a predicate with two parameters accepting one argument each, i.e., a two-place relation.


Tagalog doesn’t have a verb ‘is’, no verb ‘to be’.  Given that more literal translations of Tagalog sentences often display the phrase ang noun phrase structure as:

 

phrase [is] ang noun phrase


For example:

Titser ang babae.

Maganda ang lalaki.

Umalis ang babae.

gets rendered as:

Teacher [is] the woman.

Beautiful [is] the man.

Having left [is] the woman.

or as I prefer (see my attempt below at eliciting the ‘aha erlebniss’):

Some teacher one  [is] the woman.

Some beautiful one [is] the man.

Some having left one [is] the woman.

…given that, one might think that, always, the suspect verb aka predicate aka relation is implicitly in effect in sentences with that structure.  The lack of a verb ‘to be’, of an ‘is’ in Tagalog that so perplexed the first Spanish grammarians of the language (so that, in their total confusion and lack of understanding, they tried to interpret the Tagalog inversion marker ‘ay‘ as the verb ‘is’, a confusion and misinterpretation that has had hilarious consequences lasting to this day), is always there, just unpronounced (or unwritten).  The space between ‘maganda‘ and ‘ang lalaki‘ in the written sentence, or the lack of interruption in the string of sounds (if that is how maganda ang lalaki gets pronounced — I am not strong enough presently in Tagalog to know) or the glottal interruption (if one exists between the ‘maganda‘ and ‘ang lalaki‘)  … the space, or lack of interruption in the continuous stream of sound, or the glottal, these are, as the case may be, an implicit sign of the two-place relation ‘is’.

Following Naylor, Schachter, and my own intuition, I have been treating the space, the lack of interruption in the continuous stream of sound, the glottal as an implicit equals.  For example, I prefer to translate the above three Tagalog sentences as:

Some teacher one  = the woman.

Some beautiful one = the man.

Some having left one = the woman.

Unlike ‘is’, however, which is (if there is such a critter) a two-place relation, ‘equals’ (alternatively, ‘=’ ) is, as I am about to show, a one place relation.  It is not just that the sign corresponding to ‘is’ is lacking in Tagalog:  the (real or putative) semantics of ‘is’ is lacking in Tagalog as well.  Tagalog is working with something completely different.

Clearly the ‘equals’ that is in play here is not given by the ‘equals’ in the following two-place relation:

 

THISTHAT

EQUALS (0)
Morning Star Evening Star
3 3
Rose With Barcode 3185321 Rose With Barcode 3185321
Clifford Wirt Clifford Wirt
The murderer of Jones The butler

…because in sentences such as Maganda si Taylor Lautner, the word ‘Maganda’  does not, at the moment of its utterance, specify, identify, locate, expose, or pick out any one particular thing.   ‘Maganda’ is equivalent to ‘Some beautiful one’, or the part of the formal sentence below that occurs before the ‘=’:

∃x ∈ MAGANDA: x = si Taylor Lautner.

The x that belongs to the set MAGANDA is left unspecified, unidentified, unlocated, unexposed, un-picked-out at the start:  Maganda … though it does get specified at the end:  …si Taylor Lautner.  But a two-place relation requires two identified, specified arguments for its two attributes.

Let me try to capture in D the sentence ‘∃x ∈ MAGANDA: x = si Taylor Lautner’.  Let me posit the following 1-place relation:


MAGANDA (0)
MAGANDANG_BAGAY
Taylor Lautner
Sunset at time t and place p
Rose With Barcode 3185321
Wine Red
The Taj Mahal
Haendel’s Umbra Mai Fu

Taking this relation as my springboard, I capture ∃x ∈ MAGANDA as MAGANDA{} (which gives us TABLE_DEE, or TRUE, or YES), then do a CARTESIAN PRODUCT of that with a restriction of MAGANDA:

with
MAGANDA{} as t_sub_0,
MAGANDA{MAGANDANG_BAGAY} where   MAGANDANG_BAGAY= ‘Taylor    Lautner’ as t_sub_1:
t_sub_0 X t_sub_1

CARTESIAN PRODUCT is a special case of JOIN.  TABLE_DEE JOIN r, where r is any relation, yields r.  So the D statement above yields:

MAGANDA (1)
MAGANDANG_BAGAY
Taylor Lautner

which expresses the semantics of the sentence ‘Maganda si Taylor Lautner’.  In this way, we get rid of the doubtful (I think) verb aka two-place relation ‘is’.

To sum up, a bit impishly:  the semantics of ‘is’ is different in Tagalog than in English because Tagalog really doesn’t have an ‘is’.  Later, I will try to develop this into part of an argument that Tagalog lacks a subject.  Tagalog’s lacking a verb ‘to be’ is related to its lacking a subject.

To stray back for a moment to philosophy:  were Duns Scotus an ordinary-language philosopher working in Tagalog, it may never have occurred to him to try to find a single relation (e.g. ‘contracts’ ) between the entity Beauty, as the argument on one side of the predicate ‘is’, and Taylor Lautner as the argument on the other side of the predicate, and so on for every other proposition formed by supplying arguments to the parameters x and y in the predicate x is y.

11/10/2012:  Updated to make a point a bit more clearly.

11/10/2012:  Updated to parenthetically add some snark about the first Spanish grammarians of the Tagalog language in the 1600’s.

 

Update:  11/25/2012:  Post grayed-out because I am dissatisfied with it.


The Verb Considered As A Function

From Kroch’s and Santorini’s Syntax of Natural Language:

I embraced the summer dawn

 From the point of view of a simple formal semantics, the verb laugh is a function from entities to truth values, as illustrated in (1). Entities that laugh are associated with the value T(rue); entities that don’t with the value F(alse). In the world described in (1), Beatrice, Gary, Lukas, and Tina laugh, and Chris and Eva don’t.

By convention, entities are indicated by boldface, sets are enclosed in curly brackets, and ordered pairs are enclosed in angle brackets. It is also conventional to indicate denotations of expressions by enclosing the expressions in special square brackets. These special brackets are not part of the HTML character set, so we use two ordinary square brackets instead.
(1) [[ laugh ]] = { Beatrice T,
Chris F,
Eva F,
Gary T,
Lukas T,
Tina T }

Laugh can combine with a single argument, which denotes an entity. Intuitively, we can think of arguments as the central participants in a situation. Combining laugh with an argument (say, Lukas) has a syntactic effect and a corresponding semantic effect. The syntactic effect is to yield the sentence in (2a). (For simplicity, we disregard the past tense morpheme -ed here and in what follows.) The corresponding semantic effect is to apply the function in (1) to the argument; that is, to select the entity denoted by the argument in the function in (1) and to return the associated value. In the example at hand, the sentence comes out as true, as shown in (2b).

(2) a. Lukas laughed.
b. T

On the other hand, combining Chris with laughed yields Chris laughed with a truth value of F.

In addition to denoting simple functions, verbs can also denote recursive functions. For instance, a transitive verb denotes a function from entities to a second function, the latter of the same type as just described for the intransitive verb laugh (a function from entities to truth values). So the transitive verb invite might denote the function in (3).

(3) [[ invite ]] = { Chris Andrew T ) ,
David Andrew T ) ,
Eddie Andrew F ) ,
Chris Brian F ) ,
David Brian F ) ,
Eddie Brian T ) }

Combining invite with a theme argument (say, David) has the syntactic effect of yielding the phrase in (4a). As before, the corresponding semantic effect is to select the entity denoted by the argument in (3) and to return the associated values, as shown in (4b).

(4) a. invited David
b. [[ invited David ]] = { Andrew T ) ,
Brian F ) }

Further combining invited David with an agent argument (say, Andrew) yields the sentence in (5a) and the truth value in (5b). This second step in the derivation of a transitive sentence is exactly equivalent to the first and only step that is necessary in an intransitive sentence.

(5) a. Andrew invited David.
b. [[ Andrew invited David ]] = T

It is important to understand that the order of the arguments in (3) reflects derivational order (the order in which the arguments combine structurally), not their superficial linear order. Given purely semantic considerations, it is equally easy to write functions in which derivational order is congruent with linear order, and you are asked to do so in Exercise 3.1.

Verbs like laugh and invite are instances of one-place and two-place predicates, respectively. The term predicate here refers to a vocabulary item, with a focus on its capacity to combine with one or more arguments. The number of arguments that a predicate requires is its semantic valency.

If truth in hearts that perish

This simple formal semantics is a model of the verb laughs employing abstract objects such as functions, sets, denotations, truth values.  As a function, laughs associates, or is an association of, concrete, flesh-and-blood entity such as Chris or Lukas, with one or another of the abstract objects (T)rue or (F)alse.  Laughs has a parameter which can accept an argument (to use Date’s terminology); or to use the authors’ terminology, laughs can combine with an argument.  When combined with the name Lukas, the function laughs gets applied to the flesh-and-blood Lukas — that is to say, it selects this flesh-and-blood creature — and returns (T)rue.

If one is a Platonist they may be content with treating all the abstract objects mentioned here as existing and non-fictional:  functions and truth values exist as abstract, non-material objects just as abstract objects as the perfect triangle or the perfect square do.  If one is not a Platonist, he may still be content picturing all of these objects as if they existed, and hold out for the hope that there is, or will be, a way of treating all of these as fictions.

When considered as something that can accept (or ‘combine with’) arguments, a function is an abstract machine:  it accepts an input (the name Lukas), performs an ‘applies’ or ‘selects’ operation, and generates an output (here the truth value (T)rue).  The applying and selecting are abstract; that is, no particular, concrete operation is getting specified.  And I suppose this is how one produces an abstract operation:  name an operation, but omit any concrete implementation of that operation. 

Even the Platonist in me, however,  has some difficulty with the notion of abstract operations such as ‘applies’ and ‘selects’.  Tortured by a bee buzzing around in his bonnet, my inner Platonist feels compelled to utilize something like Plato’s Demiurge in the Timaeus to picture these operations.  Instead of Plato’s divine craftsman who shapes the world guided by his vision of the Forms, this Demiurge has something of a lower-level task of taking the string (or sounds, or hand-signals, or whatever) embodying the name Lukas, searching through the entities bearing that name (somehow the Demiurge has no problems with ambiguity), selecting one, seeing that this entity is indeed laughing, and returning a truth value.

This image of a Demiurge selecting entities and applying functions to them would have equal value for the Platonist and the fictionalist, at least if the Platonist hews to Plato.  For Plato regarded regarded his Forms (abstract objects) as real, but his Demiurge as just a myth, just a picture…in other words, a fiction. Likewise, our Demiurge, our all-seeing, untroubled-by-ambiguity selector of entities, is just a picture, a creature existing only in the realm of ‘as if’.  We need this picture as a psychological crutch to make up for that lack of any concrete implementation of the abstract operations which gets the bee in our bonnet buzzing. 

One side-note:  Santorini and Kroch have the function laughs returning both a truth value and a phrase (Lukas laughed).  But isn’t a function supposed to always return just a single value?