Category Archives: Writing To Learn

The Role Of Informational Content In Establishing Relevance In Relevant Logic

“This current version of the notes is not yet complete, but meets I think the
usual high standards for material posted on the internet.”  (Link.  No, I have not read the paper apart from this snippet.)  Please feel free to comment if you have any corrections or objections to the disquisition below, or email me at cliffengelwirt@gmail.com. 

 

Logic first became interesting to me when I entered the DBA field and started reading the works of C.J. Date, Hugh Darwen, and Nikos Lorentzos on the foundations of relational databases.  While reading in logic, I became intensely interested in Edwin D. Mares’ book RELEVANT LOGIC A PHILOSOPHICAL INTERPRETATION, which seemed to tie in — I am apparently not the first to notice this! — in a very natural way with Fred I. Dretske’s classic work, KNOWLEDGE AND THE FLOW OF INFORMATION.  As an exercise in writing to learn Mares’ book I have been for a while entering posts on this blog on the topic of Dretske’s theory of informational content as it relates to Relevant Logic.

Up until now, these posts have been nothing except an effort to decide what my position is on the topic.  They pretend to be nothing more than efforts to get my own thoughts in order.  As a result, I have not been terribly afraid to be (just occasionally, I hope!) simply mistaken and (worse) unclear.

Basically, I was thinking out loud in order to decide what I do think about the topic.  Even though these exercises in thinking out loud were both tentative and preliminary, I have found it to be a useful discipline in performing them in public, where there is always the possibility that someone actually engaging with the posts (in other words, someone who is not merely a troll) may legitimately, pointing to specifics, exclaim ‘THIS IS SIMPLY WRONG!!!!’ or ‘THIS IS CONFUSED!’

Lions And Trolls Oh My! But now that I am suffering under the delusion that I do have my thoughts on the topic in something vaguely resembling order, I am now actively throwing them out to the lions in order to see what survives intelligent, informed criticism. ((I am assuming there are lions out there who are not only hungry, but also intelligent and informed. As regards lions I keep thinking about Ned Rorem’s LIONS (A DREAM) which I once heard on WFMT in Chicago… but I digress.)) Please consider this post and the the posts linked to here as a request for comment.

As each section of this disquisition takes (almost) final shape, the link to it will become active. Each section will be kept as short as possible partly as an troll-control device: the brevity of each piece makes it easier to force the troll to state a specific objection to a specific assertion ((has the troll misstated the assertion (most of the time intentionally but sometimes not)? If so, challenge them to state it in their own words — honestly this time. Once the troll has correctly stated it, do they think the assertion is wrong? If so, why?  Does the troll think the assertion is unclear?)) rather than allowing the troll to rely on abusive innuendo.

The Problem

What Is Relevance Anyhow?

The Relevance-Making Relation Is Not The Causal Relation

The example that at least initially makes treating the relevance-making relation in terms of Dretske’s notion of informational content attractive: Dretske’s Doorbell Example.

This seems to run aground on the tautology IF p THEN p. The revisions needed to accommodate this tautology.

The ‘peanut is under which shell’ example. Will this example end up making Relevant Logic at least as weird and bizarre as Classical Logic by making the truth of implication statements relative to what one knows?

The measles and wormy red apples example.

******

No post of mine can do without an homage to Plato’s SYMPOSIUM. Here the homage will take the form of Channing Tatum.

ChanningTatumTotalBeauty_0

Edit Log: June 04, 2017: Made some minor changes.

June 10, 2017:  Made some minor changes.  Removed a joke I think wasn’t                                                          working.

June 14, 2017:  Added quote at the top.

Advertisements

Some Boring MetaBlogging

Number 14 of this pretty much describes what I am trying to do here.  In particular:

…you can work around the edges of an idea over days and weeks and months [and years] and really come to understand it. It’s this process that blogging does better than pretty much any other medium.

This is what I am trying to do with the Relevant Logic/Material Implication/Information Theory viewed through the eyes of Fred Dretske stuff (repeated endlessly).  Who knows, I might even do some endless blogging someday to gain a ‘maximal grasp’ (Merleau-Ponty) on the Roderick Chisholm stuff.


My Attempt To Identify The IF-THEN Relation With The INFORMATION-THAT Relation Ignominiously Bites The Dust

Here is yet another challenge to the idea that ‘If p Then q’ is true when the occurrence of p is information that q.  Unfortunately, I think this challenge nails the matter. Consider Dretske’s shell game example.  The peanut is under shell #4.  So the following statement is true (given that my visual faculties are in sufficiently good working order, and that I am looking in the proper direction with my eyes open):

If I turn shell #4 over now (t0), I will see a peanut at time t1

(t1 being one millisecond or whatever later than t0.)  Is my turning shell #4 over at time t0 information that I see a peanut at t1? Certainly the situation largely fits Dretske’s definition of ‘information that’:

Informational content:  A signal r carries the information that s is F = The conditional probability of s‘s being F, given r (and k), is 1 (but, given k alone, less than 1)

Fred Dretske, KNOWLEDGE AND THE FLOW OF INFORMATION, Stanford, CSLI Publications, 1999, p. 65

(k represents what the receiver already knows about the source.)  The conditional probability of my seeing the peanut at t1 is certainly 1 given my turning the shell over at t0 (and given the other conditions mentioned).  So the IF-THEN statement above certainly fits that part of the definition of informational content.

But is my turning the shell over at time t0 a signal that at time t1 that I see the peanut?  A signal is  “…any event, condition, or state of affairs the existence (occurrence) of which may depend on s‘s being F.”  (Dretske, p. 65.)  Does my turning the shell over now depend upon my seeing the peanut one millisecond in the future?  How can a present event depend upon a future event?  Clearly not.

A signal cannot occur before the event or thing or state of affairs the occurrence (existence, obtaining) of which it signals.  The smoke does not occur before the fire (or the smoldering).  The doorbell does not ring before the button is pushed.  The deer tracks in the snow do not appear before the deer show up.  Were the watchman in Aeschylus’ play AGAMEMNON in the ORESTEIA trilogy to light his fire before he spots Agamemnon’s ships, his fire would not be a signal informing Clytemnestra of the appearance of those ships on the scene:  Clytemnestra would be receiving false information.  Something cannot be announced before it occurs (exists, obtains).

“But the dark clouds signal the rain that is about to fall; the sports official signals the race that is about to start in one millisecond by firing the pistol into the air.”  Someone may object in this way to my (seemingly obvious) claim that a signal cannot occur before the thing it signals.  Yet, although we can doubtlessly “round up” the dark clouds and the firing of the pistol to the status of signals, they are not so in the very strictest sense of ‘signal’ that I intend to use here.  For the conditional probability that, given the dark clouds, rain will fall is perhaps only 99%, while the probability that the race actually will start given the firing of the pistol is perhaps only 99.9999999999% (the supernova that will hit us eventually may choose that exact millisecond to intervene by making its presence glaringly, searingly obvious, or a huge earthquake might strike at that very moment….).

A signal is  “…any event, condition, or state of affairs the existence (occurrence) of which may depend on s‘s being F” and therefore cannot occur before the occurrence (existence, obtaining) of s‘s coming to be F.   The examples I’ve just given are not signals because they occur after what they “signal”, and — surely not coincidentally — they do not depend upon what they “signal.”  Let me dwell a moment, perhaps a bit obsessively/compulsively, on this notion of dependence.  Let me say that an event, object, or state of affairs p depends upon an event, object, or state of affairs q when, given a condition c,  p would occur (exists, obtain) only because q occurs (exists, obtains).

Consider, for example, a doorbell whose wiring is defective in such a way that, 99% of the time when the button outside is getting depressed by someone or something, the doorbell rings.  But 1% of the time the doorbell does not ring when the button outside is getting depressed. (I state the example this way to make it mirror the fact that p does not follow from If p Then q; q.)  Also, there is no poltergeist inside the wiring that sometimes generates the ringing sound even when no one or nothing is pressing the button outside; likewise, there is never, ever any freak burst of electricity ultimately caused by a butterfly flapping its wings in the Amazon that generates a buttonless ringing sound.  Nor (somewhat more plausibly) is there any defect in the wiring that would ever cause a buttonless ringing sound to occur. Let c be the condition of the defective wiring as just described (including the absence of ring-generating poltergeists).  Given c (which I will call the non-poltergeist condition), the doorbell would ring only because the button outside is getting depressed (even though the button’s getting depressed does not necessarily result in the doorbell’s ringing)*.  Given c, the doorbell’s ringing depends upon someone or something’s depressing the button outside and is therefore a signal.  (A signal, moreover, carrying the information that someone or something is depressing the button outside, because the conditional probability of this is 1 given the doorbell’s ringing under condition c.  Another way to put this is to make the perhaps obvious/tautologous point that to be a signal is to carry information.)

Consider another example, one which is perhaps belongs more to the realm of probability than to causality.  One has turned over shells #1 and # 2 and verified that both are empty. They have information that the peanut is located in one of the four shells.  So c is now the condition that either the peanut is located under shell #3 or under shell #4.  Given c, shell #3 would be empty only because it is shell #4 that is covering the peanut.  It is, in fact, difficult to come up with any clear idea of anything else that could be the reason why shell #3 is empty.  Shell #3’s being empty therefore depends upon the peanut’s being located under shell #4, and the former would be a signal carrying information that the latter.  (Conversely, given that there is only 1 peanut at play in the game and given the rest of c, shell #4’s turning out to have the peanut would be a signal carrying information that shell #3 is empty.  Shell #4 would have the peanut only because shell #3 is empty. )

Now consider again the turning over shell #4 example given above as an instance of an event, object, or state of affairs that very definitely is not a signal carrying information.  It would be difficult to give any meaning to the assertion:

my turning shell #4 over at time toccurs only because I will see a peanut at time t1

Such an assertion would not, I submit, make any clear sense, since the dependency aka only because relationship is a vector traveling forward (to speak metaphorically) in time.

Also consider yet one more doorbell example:  suppose that the doorbell’s wiring is screwy in such a way that every now and then little bursts of electricity get generated which produce the ringing sound even when no one or no thing is depressing the button outside.  (Or, if you prefer, there is a poltergeist residing inside the wiring that every now and then gets agitated by a freak burst of air pressure inside the contraption that is ultimately caused by a butterfly flapping its wings in the Amazon….)  Nonetheless, the condition of the wiring is such that the doorbell always rings when the button is getting pushed.  100 percent of the time the doorbell rings when the button outside gets pushed, but 1% of the time the doorbell is ringing buttonlessly. (I state the example this way to make it mirror the fact that q does not follow from If q Then p; p.  And I am making it mirror this because, of course, the whole point of these interminable disquisitions is to dig into the nature of IF-THEN statements.)  Let me call this condition of the wiring c, as usual.  (In a moment I will be calling it the ‘poltergeist condition.>)  Given c, it would be difficult to give any sense to the following assertion:

My pressing the button outside occurs only because the doorbell is ringing.

Clearly, my pressing the button outside does not depend upon, and is not a signal for, the doorbell’s ringing.  Again, the pressing of the button does not depend upon the doorbell ringing because the dependency aka only because relationship is a vector traveling forward, not backward, in time.

“Feel free to come to the point when you finally have one,” my (possibly non-existent) reader may want to say.  Well, the point of all of the above is the following.  Given their respective condition c’s, each of the following IF-THEN statements is true:

1) If I turn shell #4 over now (t0), then I will see a peanut at time t1

2) If I press the button outside [given the poltergeist condition], then the doorbell will ring.

3) If shell #3 is empty, then the peanut is located under shell #4.

4) If the doorbell is ringing [given the non-poltergeist condition], then someone or something is depressing the button outside.

Although the antecedent p is a signal carrying the information that q in the last two examples, it is not such a signal in the first two examples.

These examples, I think, nail it:  IF-THEN statements cannot be identified with an information relation.  My attempt to identify the IF-THEN relation with the INFORMATION-THAT relation has ignominiously bitten the dust.  (Sob, sob.) Does this mean, then, that we are stuck after all with Classical Logic’s paradoxes of Material Implication, whereby both of the following statements are true?

If Cliff lives in Houston, Texas, then the earth has just one moon.

If Cliff lives in Orange County, California, then Paris, Texas is the capital of France.

(Please God, please God, please don’t let these statements be true.)  Well, maybe we aren’t forced to accept these horribly ugly statements as true after all.  For in each of the 4 numbered examples given above, the conditional probability of the consequent (given the antecedent plus the relevant condition c ((plus the relevant knowledge k))) remains 1.  It is just that in the first two examples the antecedent does not depend upon the consequent, and therefore is not a signal carrying the information that the consequent.  It is not a p only because q relationship.  Perhaps, then, we can identify the IF-THEN relation with a different (but similar) relation, which I will call ‘the conditional probability is 1‘ relation. If so, it would remain true that in examples 3 and 4 above, the antecedent p is a signal carrying information that q.  So whenever p does depend upon q in such a way as to be a signal for q the corresponding IF-THEN statements would, possibly, have the (at least to me) weird properties mentioned in a previous post:

Third, the informational relation is both intentional and relative, as described by Fred Dretske in his KNOWLEDGE AND THE FLOW OF INFORMATION.  Treating If p Then q as an information relation would make implication both intentional and relative.  The very same If p Then q statement would be true inside some frameworks and false inside others.  Rather than accept this, some would perhaps rather accept Classical Logic’s paradoxes of Material Implication.

(Sidenote:  Dretske’s measles example displays the intentional character of information.  By pure chance, all of Herman’s children happen to have the measles; moreover, one does not know this.  So when one discovers that a particular person is a child of Herman’s, they do not have information that this person has the measles.) Or are we truly stuck with this weirdness? Can we find a way to make implication non-relative and non-intentional even in those cases in which p happens to be a signal carrying the information that q?

Today’s homage to Plato’s SYMPOSIUM is this gorgeous young Asian Man: GorgeousAsianGuy

It is hard to understand how anyone can get any work done at all with Beauty like this walking the earth, but somehow we do. How sleek all those black, white, and gray tones are!

Post Updated on June 27, 2015 to make the temporal vector nature of the dependency/only because relation clearer. (Or, if my reader is particularly suspicious, they are free to think I made the update in order to cover up some totally obvious mistakes, not simply to make a somewhat muddy post slightly clearer.)


Measles, Wormy Red Apples, And God (And Peanuts)

In his Knowledge and the Flow of Information, Dretske argues that what information a signal carries is relative to what the receiver already knows about the possibilities at the source:

To illustrate, suppose that there are four shells and a peanut is located under one of them.  In attempting to find under which shell the peanut is located, I turn over shells 1 and 2 and discover them to be empty.  At this point, you arrive on the scene and join the investigation.  You are not told about my previous discoveries.  We turn over shell 3 and find it empty.  How much information do you receive from this observation?  How much do I receive?  Do I receive information that you do not receive?  … [Dretske goes on to argue that the answer is ‘yes’ because the amount of information and what information is received depends upon the reduction in possibilities achieved in each case.  Information is all about reduction in possibilities.] … This constitutes a relativization of the information contained in a signal because how much information a signal contains, and hence what information it carries, depends on what the potential receiver already knows about the various possibilities that exist at the source.

Fred Dretske, KNOWLEDGE AND THE FLOW OF INFORMATION, Stanford, CSLI Publications, 1999, pp. 78-79

The third shell’s proving to be empty when it is turned over is, for me, information that the peanut is hidden under shell 4.  But for you, it is not information that the peanut is hidden under shell 4.  What information a signal carries (here the signal is the third shell’s proving to be empty when turned over) is relative to what one already knows.

Let’s apply this conclusion to the measles and wormy read apple examples.

Suppose that one has received information that all of Herman’s children have the measles.  Should one then discover (say, a friend tells them this) that this layabout in front of one’s shop is a child of Herman’s, that this person is a child of Herman’s is now, all of a sudden, information that this person has the measles.  Before one knew that all of Herman’s children have the measles, that this person is a child of Herman’s was not information that the person has the measles.

The same reasoning applies mutatis mutandis to the wormy red apple example.  If one has information (say, received from a person who has previously examined all of the apples in the pile)  that all of the red apples in the pile are wormy, then that the apple in one’s hand drawn from this pile is red is information that the apple is wormy.  Before one has received the information that all of the red apples in the pile are wormy, a signal that the apple in one’s hand is red is not information that it is wormy.  In both the measles and the wormy red apples examples, what information a signal carries depends upon, is relative to, what one already knows.

So if one claims that If p Then q is true only when the occurrence of p is information that q, then the truth of these sentences (henceforth the ‘measles’ and  ‘wormy red apple’ statements)…

If this layabout loitering about on the front of my shop is a child of Herman’s, then this person has the measles.

and

If this apple (drawn from this particular pile) in my hand is red, then it is wormy

…is relative to what one already knows.  They will be true relative to the person who already knows that all of Herman’s children have the measles (without necessarily knowing that this particular person in front of their shop is a child of Herman’s) and that all of the red apples in this pile happen to be wormy.  They will be false relative to the person who does not already know these things.

In previous posts, I noted as an autobiographical fact that I had the strong intuition that both statements above are true, regardless of what one already knows.  But perhaps this intuition, in spite of its being my intuition, should not be regarded as totally sacrosanct.  For I will venture that most people would not be bothered by the relativity of this statement (henceforth the ‘third shell proves empty’ statement):

If the third shell proves to be empty, then the peanut is located under the fourth shell

Clearly (although I say ‘clearly’ with some trepidation, in the spirit of ‘let me throw this piece of spaghetti onto the wall, and see if it sticks,’ or, alternatively, ‘let me see if I can get away with this statement without too many screams of protest’), this statement would be true in the situation occupied by the person who already knows that the first and second shells are empty, and false in the situation occupied by the person who does not already know these things.

What can be learned from, inferred from, concluded from the third shell’s being empty, the apple’s being red, the layabout’s being a child of Herman’s, depends upon the situation one is in that is defined by what one already knows.  There isn’t, I think, anything controversial or counter-intuitive about this.  IF-THEN statements have everything to do with what can be learned from, inferred from, concluded from a given situation.  So the truth/falsity of the corresponding If p Then q statements is also relative to the situation one is in as defined by what one already knows.

And if one is still bothered by this, would one rather return to the paradoxes of Material Implication?

(Begin aside:  Remember that what is motivating this entire attempt to argue that If p Then q is true only when p is information that q is to escape from the paradoxes of Material Implication, which would count both of the following statements as true:

If Calypso music originated in Wisconsin, then the earth has two moons

and

If Paris is the capital of France, then the earth has one moon

To escape these paradoxes, we need to find a way to make p relevant to q in some way.  And the most plausible way to do this, I assert, is to insist that p be information that q.  End Of Aside.)

To undermine my initial intuition further, suppose that one has obtained information that all of the apples in the pile — both yellow and red — are wormy.  In that case, should one (blindfolded) handle each apple in turn and say ‘If this apple is red then it is wormy’, his statement would be (I venture) false.  For the redness of the apple is, in this situation, no longer what excludes the possibility that it is not wormy, or, put another way, is no longer the factor that renders as 1 the probability that the apple is wormy.  That factor is now the fact that the apple is from this pile, not that it is red.  Since the apple’s being red is no longer relevant to its being wormy (is no longer what makes the probability the apple is wormy 1), one cannot learn from, conclude from, infer from its being red that it is wormy. The apple’s being wormy no longer hinges on its being red. The statement is now false for exactly the same reason that ‘If Paris is the capital of France then the earth has one moon’ is false.

One might try to preserve a version of the intuition that the measles and wormy red apple statements are true regardless of anyone’s knowledge by proposing that these are true independently of what any finite intelligence knows or doesn’t know.  What if there were an infinite intelligence — a God who knows everything in general, and the measles status of Herman’s children, the worminess status of the red apples in the pile, and the location of the peanut under the fourth shell in particular.  One could then accurately say the ‘measles’, ‘wormy red apples’, and ‘the third shell proves empty’ statements are true objectively, that is to say, sub specie aeternitatis, even if they are true or false as the case may be, from the subjective standpoints of this or that finite intelligence.

The analogy would be with Galilean motion studied in High School physics.  An object may be moving at 10 miles per hour given one reference frame and 60 miles an hour given another reference frame; nonetheless, there was to be some absolute reference frame embracing all of them which would let one give an absolute, non-relative value to the object’s speed.

But the intuition cannot be rescued this way.  For clearly, nothing could ever be a signal, could be information-that, for an infinite intelligence that knew everything.  Such an intelligence with its penetrating x-ray vision would already know, for example, that the peanut was located under the fourth shell.  Given this knowledge, the third shell’s proving empty would not reduce to 1 for this intelligence the number of possibilities regarding the location of the shell.  For the number of such possibilities was already 1 for this intelligence.  Likewise, for this all-knowing intelligence, that this particular layabout is a child of Herman’s would do nothing to reduce to 1 the probability that this person has the measles.  Nor would the fact that this particular apple is red reduce for this intelligence the number of possibilities regarding the worminess status of the apple from 2 (the apple is wormy or non-wormy) to 1 (the apple is wormy).  With no reduction of possibilities, there is no signal carrying information-that in any of these cases.

God’s knowledge cannot serve as the equivalent in logic of the Galilean absolute reference frame.

Not only is information-that relative to what one already knows, it also requires finitude.  No limitation on one’s knowledge — no hiddenness — no information-that.  And if the truth of If p Then q statements requires that the occurrence of p be information that q, the truth of these statements also require finitude.

One final note:  how can one account for the illusion (if it is that) that both the measles and the wormy red apply statements are true regardless of what one already knows?  I think the answer lies in the fact that, after completely talking through one’s hat at time 1 with the statement “If this apple is red, then it is wormy,” one were later at time 2 to examine all of the red apples and discovered they were all wormy (and that just some of the yellow apples were), it would seem that, since the statement is true at time 2, it would have to have been true at time 1.  The truth value of a statement like this can’t change, can it?  Maybe we would prefer to accept the paradoxes of Material Implication after all.  But it seems to me that one should accept that, at least in the case of the ‘third shell proves empty’ statement, the truth value of that statement can change with time as one obtains more knowledge (you later get information that the first and second shells also proved to be empty).  So the truth value of the measles and wormy red apples statements changing over time should not prove to be an absolute obstacle.

     *****

The entire point of this exercise is not just to make grandiose metaphysically-existentialist-sounding statements such as ‘logical implication requires finitude’ (although I must admit this is one of my aims), but also to escape from Classical Logic’s paradoxes of Material Implication by insisting that there must be some relation between p and q that makes p relevant to q, and that this relation consists in p‘s being information that q.

In the previous post, I noted two apparent counterexamples (the measles and wormy red apple statements) that would seem to preclude identifying this hoped-for relevance-making relation with information-that.  These statements seem to be true even though in these cases p is not information that q.  Also, identifying this relation with information-that would make the truth of IF-THEN statements relative to what one already knows, an implication that may make one prefer the paradoxes of Classical Logic’s Material Implication.

In this post, I employ the ‘third shell proves empty’ statement, as well as the close connection (I claim) that IF-THEN statements have with what one can learn from, infer from, or conclude from a situation to remove whatever counter-intuitiveness might adhere to the notion that the truth of IF-THEN statements is relative to what one knows.  (Of course what one can learn, infer from, conclude from a situation depends upon what one already knows.  Of course the truth/falsity of ‘the third shell proves empty’ statement depends as well upon what one already knows.)  If one can accept the relativity of IF-THEN statements, they will be in a better position to accept the idea that those cases in which p is not information that q (the redness of the apple sometimes fails to be information that the apple is wormy; that this person is a child of Herman’s sometimes fails to be information that this person has the measles)  are also cases in which If p Then q is false.

This leaves the third difficulty mentioned in the previous post:  what to do about the statement If p Then p?  Is a channel of information supposed to exist between p and the self-same p?

Do I have a song and dance that will eliminate this difficulty?

*****

Today’s homage to Plato’s SYMPOSIUM is the soccer player James Rodriguez.

James_Rodriguez

From math teachers to soccer players…How can anyone get anything at all done with beauty like this walking the earth?


Measles And Wormy Red Apples: IF-THEN Statements And INFORMATION THAT (An Apparent Counter-Example)

It would seem that there are some clear counterexamples to the idea that If p Then q is true when p is information that q.

Consider the following (somewhat gruesome, in the light of the irresponsibility of our contemporary anti-vaxxers) measles example from Fred Dretske.  Dretske, by the way, does not discuss this example in the light of IF-THEN statements.

…an exceptionless uniformity … is not sufficient for the purposes of transmitting information.  Correlations, even pervasive correlations, are not to be confused with informational relations.  Even if the properties F and G are perfectly correlated (whatever is F is G and vice versa), this does not mean that there is information in s’s being F about s‘s being G (or vice versa).  It does not mean that a signal carrying the information that s is F also carries the information that s is G.  For the correlation between F and G may be the sheerest coincidence, a correlation whose persistence is not assured by any law of nature or principle of logic.  All Fs can be G without the probability of s‘s being G, given that it is F, being 1.

To illustrate this point, suppose that all Herman’s children have the measles.  Despite the “correlation,” a signal might well carry the information that Alice is one of Herman’s children without carrying the information that Alice has the measles.  Presumably the fact that all Herman’s children (living in different parts of the country) happened to contract the measles at the same time does not make the probability of their having the measles, given their common parentage, 1.  Since this is so, a signal can carry the information that Alice is one of Herman’s children without carrying the information that she has the measles despite the fact that all Herman’s children have the measles.  It is this fact about information that helps to explain (as we will see in Part II) why we are sometimes in a position to see that (hence, know that) s is F without being able to tell whether s is G despite the fact that every F is G.  Recognizing Alice as one of Herman’s children is not good enough for a medical diagnosis no matter what happens to be true of Herman’s children.  It is diagnostically significant only if the correlation is a manifestation of a nomic (e.g., genetic) regularity between being one of Herman’s children and having the measles.

Fred Dretske, KNOWLEDGE AND THE FLOW OF INFORMATION, Stanford, CSLI Publications, 1999, pp. 73-74

Myself, I would rather choose a less gruesome (given the sometimes horrific consequences of measles), even if still somewhat gross, example.  Suppose that there is a pile comprising red and yellow apples in my grandfather’s orchard.  By pure chance, some of the yellow apples happen to be wormy, while all of the red apples are so.  Given his measles example, Dretske would surely claim that just the fact that a given apple from the pile is red would not constitute information that the apple is wormy.  But suppose that, blindfolded, I handle each apple in the pile one by one, saying each time:

If this apple is red, Then it is wormy.

In my mind’s inner ear, my intuition is shouting to me:  “This is TRUE TRUE TRUE TRUE TRUE!!!!!!”

Likewise, surely the following statement is also true:

If this person loitering here in front of my shop among all these other disreputable-looking lay-abouts is a child of Herman’s, Then she has measles.

This statement would be true, it (strongly) seems to me, even if the person uttering it is talking completely through their hat, even randomly, and has absolutely no evidence that ‘this person’ has the measles, or that she is a child of Herman’s, or that there is any connection at all, even an accidental one, between Herman’s children and the measles.

Therefore, there would seem to be clear cases in which an If p Then q statement is true even when the occurrence of p is not information that q.

Nonetheless, I (at least as of this writing) think I can show in a later post that Dretske’s discussion of the relativity of information drastically undercuts what he thinks his measles example shows.  (I am also thoroughly confident, by the way, that if my doubts are valid, they have already been discussed a thousand times already by everyone and their uncle.)  So the idea that what makes p relevant to q in any true If p Then q statement is an informational relation . . . this idea might find a rescuer after all.

 *****

I hope that today’s homage to Plato’s SYMPOSIUM has never suffered from the measles.  This gorgeous hunk is a math teacher in Great Britain (perhaps hailing ultimately from Italy) who moonlights as a model.

pietronew

I am confident that this math teach will inspire many of his students, both male and female, to start the ascending the platonic ladder whose lowest rung consists in the contemplation of the Beauty of Gorgeous Guys, whose next rungs consist in the contemplation of the Beauty of Math and Logic, and which finally leads to the contemplation of the Form of Beauty Itself.

For now, however, I will linger a bit at the lowest rung, the Contemplation of the Beauty of Gorgeous Guys.  I will get to the Form of Beauty Itself sometime.


IF-THEN Treated As INFORMATION THAT

Relevant Logic tries to resolve the following paradoxes of Classical Logic’s Material Implication by insisting that for any If p Then q statement, p must be relevant to q:

If Cliff Wirt resides in Houston, Texas, Then the earth has just one moon.

If Calypso music originated in Wisconsin, Then the earth has two moons.

According to Classical Logic, both of the above statements are true because they fulfil the truth-functional requirements of true IF-THEN statements.  (T T and F F.  According to Classical Logic, F T also yields a true IF-THEN statement; the only truth-table combination that yields a false IF-THEN statement is T F.)  Nonetheless, one may be excused if they think that regarding the two statements as true is a bit paradoxical, to put it mildly.  One cannot conclude, infer, or learn from Cliff Wirt’s residing in Houston that the earth has just one moon.  Even less can one conclude, infer, or learn from the “false fact” that Calypso music originated in Wisconsin the equally “false fact” that the earth has two moons.  One would think that both IF-THEN statements are false because in both, the antecedent, p, is irrelevant to the consequent, q.

So the truth-functional account of the IF-THEN statement has to go, I am thoroughly persuaded, because it can take into account only the truth or falsity of the antecedent and consequent, leaving completely out of view the relevance of the antecedent to the consequent.

What, then, would make the antecedent relevant to the consequent?  What is the relation between p and q when we say If p Then q?  I am partial to the hypothesis that the relation is informational.  If p Then q is true when the occurrence of p is information that q.  If the doorbell is ringing, then someone or something outside has depressed the button; that the doorbell is ringing would be information that someone or something outside has depressed the button.  The first is information that the second because there is a channel of information extending from the button to the ringing sound, such that, when that channel is in good working order, the probability that the button is being depressed is 100% when the ringing sound occurs.

Because this informational relation exists between the ringing sound and the button’s being depressed, one can conclude from, infer from learn from the doorbell’s ringing that someone or something is depressing the button outside.  So — oh my god! — there is a close affinity between If p Then q and p’s being information that q.

There are, however, several obstacles in the way of treating the IF-THEN statement as an informational relation.

First, how would one deal with If p then p?  Is there somehow supposed to be a channel of information between p and itself?

Second, there are (seemingly) clear cases in which If p Then q is true when p is most definitely not information that q.

Third, the informational relation is both intentional and relative, as described by Fred Dretske in his KNOWLEDGE AND THE FLOW OF INFORMATION.  Treating If p Then q as an information relation would make implication both intentional and relative.  The very same If p Then q statement would be true inside some frameworks and false inside others.  Rather than accept this, some would perhaps rather accept Classical Logic’s paradoxes of Material Implication.

*****

Today’s homage to Plato’s SYMPOSIUM takes the form of a very kalos Bruno Mars.  According to Plato, one ascends a ladder whose first rung consists in the beauty of gorgeous young men, whose middle rungs consist in the beauty of things like Classical and Relevant logic, and whose final rung consists in the Form of Beauty Itself.

bruno-mars-promo

I will get to adoring the Form of Beauty Itself eventually.  For now, I will content myself with adoring the Form of Bruno Mars.


Aristotle’s Sea Battle Argument

In a rough draft of a blog post at work whose real topic had, of course, precious little to do with Aristotle, I playfully tried to explicate his Sea Battle argument to an audience of techies as follows:

The following statement (call it p) is necessarily true:

Either there will be a sea battle tomorrow [at location l], or there will not be a sea battle tomorrow [at location l].

At least one, or possibly both of the constituents of an OR statement must be true if the statement is true.  If the OR statement happens to be an ‘A OR not A’ statement, at most one of  the constituent statements can be true.  What is more, since ‘A OR not A’ must be true, one of the constituent statements must be true.  So either

There will be a sea battle tomorrow [at location l]

is true, or:

There will not be a sea battle tomorrow [at location l]

is true.

But which one?

Suppose that ‘There will be a sea battle tomorrow [at location l]’ is the constituent proposition that is true.  (Call this constituent proposition c1.)  One may already have been struck by the Aha Erlebniss that the sea battle will not  fail to happen (and in fact cannot fail to happen) tomorrow at location l.  (henceforth ‘at location l‘) will be understood.)  But my mind and my imagination feel the presence of a gap between c1 and ‘the sea battle cannot fail to happen tomorrow.’  When I try to jump from the first to the second, I feel a bit as if I were plunging into a void.  The following thought experiment is an attempt to bridge that void,

Start Of Thought Experiment:   To avoid complications involving indexicals, suppose that today, at time t0, I say:

A sea battle happens at time tn.

From the standpoint t0, tn is a point in time that will roll by tomorrow.  Could my statement stop being true at t0+1 (0+1 < n)?  Don’t be silly — of course not.  Someone’s statement ‘The cat (Sylvester, with CAT_ID 347434395) is on the mat (the medieval Persian mat with MAT_ID 84541) at 12:01 pm, October 31, 2014’ never ceases to be true, assuming it was true at 12:01 pm, October 31, 2014.  Ditto my sea-battle statement.  Could my sea-battle statement suddenly stop being true at to+2?  No, of course not.  And so on for every time point starting from t0 and going up to tn.  My statement will be equally true at tn – 1 as well as at time tn. Throughout, it remains true that the sea battle will happen at tn.  There is no room left for the sea battle NOT to happen at tn.

In fact, what would it mean for that statement suddenly to become not true, at some point between to and tn?  Well, suppose — doubtlessly per impossible — that the chain of one set of causes leading to a set of effects serving as causes for yet another set of effects ceases — say, at tn-1 — to be deterministic.  That chain continues unbroken until, abruptly at tn-1, it becomes a flip of nature’s coin whether the sea battle happen or not.  Then, it seems to me, the truth of ‘A sea battle happens at time tn’ ceases to be defined.  The statement is neither true nor false.  Therefore, the statement would be not true, though it would not be false either.

Or again, suppose that the chain continues unbroken until suddenly, at time tn, we end up with (again, per impossible, I am sure) with a weird quantum Schroedinger’s sea battle:  the sea battle is simultaneously in a state of happening and not happening at tn.    In this case, my intuition is, the truth value of my sea battle statement would be undefined at t0 as well as at tn.  End Of Thought Experiment.

So assuming there is a chain of causes working deterministically from t0 to tn, my sea battle statement is definitely true at t0.  And there is no way that the sea battle will fail to happen at tn.  The chain of deterministic causes (assuming this exists) is what gives sense to the idea that my sea battle statement has a definite truth value at t0 — that is is true (false) at that time-point.

This is Fatalism.  Fatalism is often thought to entail that we have no Free Will.  Aristotle comes to this conclusion, and panics.   (At least according to my explication of this stuff to my fellow geek colleagues.)  “Oh my god!!!!!!….er….I mean….oh my Zeus!!!!!  If there is no Free Will, then that loud sucking sound you hear is my ETHICS going down the drain!!!!!  Quick!!! Quick!!!!! Think of something!!!!!!’  (I have to admit that my translation of the ancient Greek here is a trifle free.)  So to save his ethical theory Aristotle decides to assert that while the total original proposition, p, is necessarily true, the truth value of both of its constituents is undefined.  Neither of its constituents is either true nor false.

But I do not see how this (the constituents’ not having a definite truth value) could be so unless the sea battle’s happening (or failing to happen) tomorrow is a matter of nature’s flipping the coin.  Aristotle cannot be right.

I say ‘Aristotle cannot be right’ in full confidence, as a matter of black and white.  Nonetheless, just a little shade of gray, a tiny sliver of doubt, does enter here.  The laws of nature are supposed to be deterministic on the level of apples and triremes, but non-deterministic on the level of protons and electrons (and for all I know on the level of quarks as well). On the micro level, nature is (if I understand this stuff correctly) constantly tossing a coin.  Although one is not supposed to mention quantum physics in a philosophical discussion unless they (intentional use of ‘they’ as a singular gender-neutral pronoun) have completed at least 8 graduate courses in quantum physics (with no grade lower than a B+ in any of them), I do have to at least wonder quantum weirdness might invade the causal chain leading to the sea battle’s occurring (failing to occur) tomorrow in such a way as to make it only 99.9999999999999999999999999999999999999999999999999999999999% probable, not 100% probable, that the sea battle will happen (fail to happen) tomorrow.  Is this enough to blast away the bridge that leads from the present to the future that lets us say that a statement about the future uttered now is either true or false?  I will leave that as a nagging question leaving in its wake just the tiniest whiff of doubt.

* * * * *

If Aristotle were right, then either p is not in fact an OR statement (it only looks like one), which seems rather counter-intuitive to me), or normal classical logic fails to hold for the future.  Contrary to normal, classical logic, it would not be the case that an OR statement is true if and only if at least one of its constituent statements is true.  This would hold only for statements about the present.

But in that case statements such as ‘If this apple drops from the tree under which I am sitting, this apple will splat onto my head in one second’ (call this the ‘apple if-then statement) will not have a defined truth value.  Reducing to ‘Either this apple does not drop from the tree under which I am sitting, OR this apple will not splat on my head in one second’ (‘if p then q’ is the same as ‘not p or q’),  So the truth value of the total apple if-then statement will be undefined because, being a statement about the future, the truth value of ‘this apple will splat on my head in one second’ is undefined.

So if we restrict normal, classical logic to just the present, the number of interesting statements it rules over will become awfully restricted.  Normal, classical logic will become a parlous affair, just as pitiful as the crowning of John Cantacuzenus  and Irene, Andronicus Asen’s daughter in the waning days of the Byzantine Empire.  As related in C.P. Cavafy’s poem Of Colored Glass:

As they had very little in the way of precious stones

(our wretched dominion’s poverty was great

they wore artificial ones.  A heap of bits of glass,

scarlet, green or blue.

I always end my philosphical/logical posts with an homage to Plato’s SYMPOSIUM, for which purpose I will use Ashton Kutcher (swooning, rapturous sigh) yet one more time:

Ashton_Kutcher_0

Look at those stunningly beautiful brown eyes!!!  How can anyone get any work done with beauty like this walking the earth?