# Category Archives: Relational Algebra

The Wikipedia article Argument (linguistics) starts its discussion of the argument/adjunct distinction by asserting that an argument is what is demanded by a predicate to complete its meaning, while an adjunct is not so demanded.  For example, if someone asks me “What is Joe eating?” my answer would be drastically incomplete if I replied “eats.”  My answer would still be drastically incomplete if I supplied just one argument, ‘Joe’, to say ‘Joe eats.’  Only when I supply a second argument, say, ‘a fried egg’, would my reply not create a sense of a question ludicrously left hanging and an answer simply not given.  The predicate _eats_ demands two arguments, such as  ‘Joe’ and ‘a fried egg’ for my reply to make any sense.

( This example, of course, is my own; I am offering it (maybe tendentiously?) in order to make drawing certain conclusions more natural. )

‘[I]n the kitchen’, however, is an adjunct, since nothing would be left ludicrously left hanging in the air were I to leave that argument out of the proposition “Joe eats a fried egg in the kitchen.”  The predicate eats does not demand that argument.

This criterion — i.e., what is demanded by a predicate to complete its meaning … henceforth I will call this the ‘demands criterion’ — runs into trouble when one notices that sometimes eats demands two predicates, but sometimes demands just one.  One might say:  “Joe goes into the kitchen.  Joe eats.”  ( Imagine a novelist or short-story writer working in a certain style.)  Although one could just as well say “Joe goes into the kitchen.  Joe eats a fried egg”, the argument ‘a fried egg’ is not demanded in this particular piece of discourse.

So if one wants to maintain that the predicate eats takes two arguments, they would  have to abandon the ‘what is demanded by a predicate to complete its meaning’ criterion and find another criterion for what is to count as an argument and what is to count as an adjunct.  This a contributor (doubtlessly not the same person who put forward the ‘demands’ criterion) to the Wikipedia article cited above tries to do.

But if one wants to retain the demands criterion, they can assert that two different predicates may get invoked, depending upon the context, depending upon the circumstances, when someone utters the word ‘eats’ in a stretch of discourse.  ( I am not clearly distinguishing between predicate and word here; perhaps I don’t necessarily need to just right here.)  When one invokes the predicate in order to answer the question ‘What is Joe eating?’, invoking the predicate creates a proposition, or tuple, in a 2-place relation.  In circumstances in which nothing is left ludicrously hanging in the air when one says ‘Joe eats’, the predicate creates a proposition, or tuple, in a 1-place relation.  There are two different predicates that may get invoked when one utters ‘eats’.  And depending upon which predicate gets invoked, ‘a fried egg’ is either an argument or an adjunct.

Two-place relation (demands what is eaten to complete the meaning):

EATS
PERSON_EATING FOOD_ITEM_BEING_EATEN
PERSON( NAME(‘Joe’) ) FOOD_ITEM( NAME(‘This fried egg’) )
PERSON( NAME(‘Khadija’) ) FOOD_ITEM( NAME(‘This souffle’) )
PERSON( NAME(‘Juan’) ) FOOD_ITEM( NAME(‘This fajita’) )
PERSON( NAME(‘Kha’) ) FOOD_ITEM( NAME(‘This bowl of Pho’) )
PERSON( NAME(‘Cliff’) ) FOOD_ITEM( NAME(‘This plate of Thai food with a 5-star Thai-spicy rating’) )
PERSON( NAME(‘Cliff’) ) FOOD_ITEM( NAME(‘This strip of bacon’) )

Here the key is composite, comprising both PERSON_EATING and FOOD_ITEM_BEING_EATEN, since we would may want to answer the question “What is Cliff eating?’ with “Cliff eats a fried egg and Cliff eats a strip of bacon.”

One-place relation (does not demand what is eaten to complete the meaning):

EATS
PERSON_EATING
PERSON( NAME(‘Joe’) )
PERSON( NAME(‘Juan’) )
PERSON( NAME(‘Kha’) )
PERSON( NAME(‘Cliff’) )

Here the key is, of course, PERSON_EATING.

Sometimes what Joe eats is a ‘core element of the situation’, sometimes it is not.  In a possible world there exists a tribe for whom the amount of  energy pounded into the ground by John’s running is a core element of the situation runs, such that something is left ludicrously hanging in the air when one simply says ‘John runs’ and not (to invent a new syntactic marker, ‘tha’, which expresses ‘the energy absorbed by the ground when John runs”’, just as ‘to’ expresses ‘the place to which John ran’ ) ‘John runs tha 1,000 <<some unit of energy>>’.

When what is eaten is an adjunct, not an argument, one can, I think, treat the attribute PERSON_EATING in the two-place relation as a foreign key dependent upon the  PERSON_EATING attribute in the one-place relation.   would be both a unique key in that relation and a foreign key to the one-place relation.  This kind of design is, of course, how one would avoids “nulls” or “optional values” in a SQL table like the following:

SQL Table (what is eaten is an optional or “nullable value”):

EATS
PERSON_EATING FOOD_ITEM_BEING_EATEN
Joe  Fried egg
Juan
Kha Bowl of Pho
Cliff
Cliff

Yes — there is a certain oddness, a certain ugliness, to having Cliff suffer from two “null values”.  Maybe there is something fishy about the SQL idea of a “null value”?  But the SQL table does convey the idea that an adjunct is an optional value, while an argument is required.  After conveying this idea, we can get rid of the SQL table with its dubious nulls and replace it with the two-place relation EATS whose PERSON_EATING attribute is a foreign key to the one-place relation.

EATS
PERSON_EATING FOOD_ITEM_BEING_EATEN IN ORDER TO
PERSON( NAME(‘Joe’) ) FOOD_ITEM( NAME(‘This fried egg’) ) REASON( NAME(‘Gain Nutrition’) )
PERSON( NAME(‘Khadija’) ) FOOD_ITEM( NAME(‘This souffle’) ) REASON( NAME(‘Gain Nutrition’) )
PERSON( NAME(‘Juan’) ) FOOD_ITEM( NAME(‘This fajita’) ) REASON( NAME(‘Gain Nutrition’) )
PERSON( NAME(‘Kha’) ) FOOD_ITEM( NAME(‘This bowl of Pho’) ) REASON( NAME(‘Gain Nutrition’) )
PERSON( NAME(‘Cliff’) ) FOOD_ITEM( NAME(‘This plate of Thai food with a 5-star Thai-spicy rating’) ) REASON( NAME(‘Show how macho he is’) )
PERSON( NAME(‘Cliff’) ) FOOD_ITEM( NAME(‘This plate of Thai food with a 5-star Thai-spicy rating’) ) REASON( NAME(‘Show how much pain and suffering he can endure’) )
PERSON( NAME(‘Cliff’) ) FOOD_ITEM( NAME(‘This strip of bacon’) ) REASON( NAME(‘Indulge in a guilty pleasure’) )

Here of course, the key is PERSON_EATING, FOOD_ITEM_BEING_EATEN, and IN_ORDER_TO.

This is the way of treating the argument/adjunct distinction that I prefer at the moment, possibly with no good argument for preferring this way to the alternative. The alternative that is at the back of my mind as I write this is something like the following:  there is only one predicate eats, which is a two-place relation.  Or rather, there is only one primary, non-derived predicate eats.  In those cases in which the what-is-eaten argument is optional (so we are giving up the demands criterion for what is to count as an argument), we are projecting on the relation EATS on the PERSON_EATING attribute, to generate propositions such as “Joe eats something.”

EATS(1)
PERSON_EATING SOME ATTRIBUTE
PERSON( NAME(‘Joe’) ) Some thing or things
PERSON( NAME(‘Khadija’) ) Some thing or things
PERSON( NAME(‘Juan’) ) Some thing or things
PERSON( NAME(‘Kha’) ) Some thing or things
PERSON( NAME(‘Cliff’) ) Some thing or things

Here I envisage the demi-urge performing the needed projection by ignoring the FOOD_ITEM_EATEN attribute (perhaps even forgetting there is such an attribute in the relation), then, in order to avoid duplicates (we don’t want our demi-urge to be seeing double!), collapsing what had been two appearances of Cliff into just a single appearance.

The picture of relations above may be pretty (forget the picture of the SQL table — that is definitely not pretty…nothing connected to SQL ever is), but even prettier is  Channing Tatum aka Magic Mike, who is today’s homage to Plato’s SYMPOSIUM:

Notwithstanding all of my rapturous sighs at the moment, my sole interest in Magic Mike is, of course, as a stepping stone first, to the Relational Algebra, and then, ultimately, to the Platonic Form of Beauty.

## Logical Pairings

In previous posts I’ve tried to interpret the canonical Tagalog sentence (e.g., maganda si Taylor Lautner) in terms of an equality relation, GORGEOUS_EQUALS_GORGEOUS.  Conceptually, the relation is formed by logically pairing each member of the set GORGEOUS (MAGANDA) to each of the members, then taking a subset of the set that results from this logical paring.  That subset comprises those logical pairings in which each member of the pair is identical with the other.

What do I mean by ‘logical pairing’?  In the real world, to pair one thing with another is to bring the two things together in some way.  One may pair, for example, some particular matte board, with its particular color, with the painting one is getting framed.  Here, the matte board and painting are getting physically paired.  Or one may pair John with Bill by picturing them in the mind’s eye as together as a couple.  Or one may pair John with John by first seeing him double (i.e., seeing him twice but simultaneously), then by realizing the two Johns are in fact one.

To get a logical pairing, abstract from any concrete form of pairing, that is, ignore any particular way in which the bringing together is done.  Ignore in fact everything about them except that they go under the heading ‘bringing together’ (since maybe that is the only single thing they all have in common.)   Then be content with the fact that, while each member of the set MAGANDA can potentially be brought together with every member of that set,  any actual pairings will be performed just every now and then, and only for a few members.  (For example, in a particular article, Dan Savage pictures Ashton Kutcher and Matt Damon together.)  A logical pairing is a bringing together in which all concrete details of the bringing together (how it is done, in what sense the things are brought together?  Physically?  In the imagination only?  By already knowing that the “objects” of one’s double vision are in fact one and the same?) are ignored.  One salient detail in particular is ignored:  is the pairing actually being done in any given instance, or is it just something that could be done?

If one does not want to rest content with each member of the set being brought together just potentially with every other member of the set, they (plural third person intentionally being used here as a neutral singular third person) are free to imagine a Demiurge ala Plato or a God ala the medievals whose cognitive capacities are sufficiently large as to simultaneously bring together in its mind’s eye every member of the set MAGANDA with every member of that set, so large, in fact, as to be able to see Matt Damon twice with the mind’s eye but already know that Matt Damon is, well, Matt Damon.

I will end by confessing that I like to think of projection as the Demiurge’s ignoring one or more attributes of a relation, and of restriction as the Demiurge’s ignoring one or more tuples in the relation.

Today, my homage to Plato’s SYMPOSIUM (first, gorgeous guys, then the Relational Algebra, then the form Beauty itself) will take the form of a concrete (not just a logical) pairing of Matt Damon and Ashton Kutcher:

Sigh.  There is too much beauty in the world.

## Oh My God, I Get Tons Of Likes When…

Oh my god, I get tons of likes when I put Ashton Kutcher in relation to a Cavafy poem, but none at all when I talk about the Relational Algebra.  🙂

Male Pilipino total gorgeousness:

This is a high-minded homage to Plato’s SYMPOSIUM, of course.

## Some More Clean-Up Work: Propositions And States Of Affairs

Following Chisholm, I have been identifying propositions with states of affairs.  A proposition is a subset of the set of states of affairs.  The state of affairs of John grasping a doorknob at time t_0 in Chicago is a state of affairs that always occurs (or always fails to occur).   States of affairs like this one are propositions.  The truth (falsity) of a proposition is nothing but a certain state of affairs occurring (failing to occur).  I am ignoring the question, which is pestering me right now, of why then it seems so awkward to talk about a ‘true’ (‘false’) state of affairs.  From The Stanford Encyclopedia of Philosophy article on Roderick Chisholm:

Consider the state of affairs that is expressed by the sentence ‘Someone is walking’. Chisholm wanted to say that this state of affairs occurs whenever someone walks, and fails to occur at times when no one is walking. Other states of affairs are not like this. For them, it is impossible to sometimes occur and sometimes fail to occur. Chisholm claims that this provides the opportunity for an ontological reduction. We can define a proposition as a state of affairs of this latter sort — it is impossible for there to be times when it occurs and other times when it does not occur. A true proposition is thus one that occurs; and afalse proposition is one that does not occur. Chisholm thinks that we may understand the principles of logic to be about these propositions. By saying that a fact is a true proposition, Chisholm gains yet another ontological reduction ([P&O], 123).

Chisholm thought that in some cases it makes sense to speak of the location at which a state of affairs occurs. Suppose John walks in Chicago at a certain time. Then Chisholm would be willing to say that the state of affairs of John’s walking occurs in Chicago and at that time.

Those states of affairs that are not propositions are events.   I am going through this stuff a bit impressionistically; the chances of my making an error someplace are high.

The tuples in the body of a database relation are propositions.  That is to say, they are states of affairs.  In a conventional database, these are always states of affairs occurring now, and now, and now…. John is an employee of WIDGETS_R_US now, the ‘now’ being implicit in the presence of that tuple in the relation.   In a temporal database as described by Date and Darwen (TEMPORAL DATA AND THE RELATIONAL MODEL),  these are states of affairs that occurred during a time period, or are occurring now (“Since t_0….”), the relevant time periods being explicitly stated in the tuple.

Since propositions are nothing but states of affairs of a certain kind, the operations of the Relational Algebra are operations on states of affairs of that kind.  On the relation ‘Standing_To_The_RIGHT_Of’, for example, we can perform a RESTRICT operation that delivers to us the state of affairs of Don standing to the right of Genghis Khan, then perform a PROJECT operation on that derived relation to obtain just Don.

We will figure out later what to do with Don now that we have him.

My homage to Plato’s SYMPOSIUM for this post will be Matt Damon.  This time we are a bit further along on the way towards eros for mathematical beauty:

But let’s not forget it all originally stems from eros for gorgeous young men.

## Semantic vs. Syntactic Arguments

In a previous post, playing the role of a would-be ordinary-language philosopher working in Tagalog (which language, to the the total consternation and perplexity of the Spanish grammarians during the 1600s, lacks the verb ‘to be’), I tried to provoke the suspicion that there is no single relation IS that could be pictured as follows:

IS (0)
THING PROPERTY
NUMBER( NAME(‘3’) ) PROPERTY( NAME(‘Prime’) )
CAR( NAME(‘Car With Serial Number 1235813’) ) PROPERTY( NAME(‘Red’) )
FLOWER( NAME (‘Rose With Barcode 3185321’) ) PROPERTY( NAME(‘Beautiful’) )
MINERAL_ITEM( NAME(‘Grain Of Salt Mentioned By Hegel’) ) PROPERTY( NAME(‘Cubical’) )
MINERAL_ITEM( NAME(‘Grain Of Salt Mentioned By Hegel’) ) PROPERTY( NAME(‘White’) )

Contra John Duns Scotus, for example, there is no single relation ‘contracts’ holding between a universal existing as always-already contracted into a particular. (To back up for a moment, the property denoted by NAME(‘three-sided’)is the universal denoted by NAME(‘three-sidedness’)existing as already contracted into a particular triangle.) Nor is there any other single relation which we can identify with the verb ‘is’. Or … letting my Tagalog ordinary-language suspicions run wild for the moment … so I will suppose.

There is no semantic relation (we are supposing) between the particular thing and the particular property.  But there is a syntactic relation between two names, pictured as follows;

IS (0)
THING PROPERTY
NAME(‘3’) NAME(‘Prime’)
NAME(‘Car With Serial Number 1235813’) NAME(‘Red’)
NAME(‘Rose With Barcode 3185321’) NAME(‘Beautiful’)
NAME(‘Grain Of Salt Mentioned By Hegel’) NAME(‘Cubical’)
NAME(‘Grain Of Salt Mentioned By Hegel’) NAME(‘White’)

Voila:  here is the distinction between semantic vs. syntactical arguments to a verb aka predicate that puzzled me in an earlier post.  NAME(‘3’) and NAME(‘Prime’) are syntactic predicates to the verb/predicate ‘is’.  NUMBER( NAME(‘3’) ) and PROPERTY( NAME(‘Prime’) ) are the semantic predicates to the verb ‘is’ — or would be if there were such a verb ‘is’ that took semantic arguments.

In the spirit of ‘let’s see how long I can get away with this’, let me propose the following chain of events for verbs such as eats that do take semantic arguments.  Consider a relation like the one pictured here:

EATS (0)
NAME_OF_PERSON_EATING NAME_OF_FOOD_ITEM_BEING_EATEN
NAME(‘Joe’) NAME(‘This egg’)
NAME(‘Juan’) NAME(‘This fajita’)
NAME(‘Kha’) NAME(‘This bowl of Pho’)
NAME(‘Cliff’) NAME(‘This plate of Thai food with a 5-star Thai-spicy rating’)

When used in ordinary discourse, rather than mentioned as sentences with whatever syntactic properties, these tuples with their syntactic arguments get transformed into the following tuples with their semantic arguments:

EATS (0)
PERSON_EATING FOOD_ITEM_BEING_EATEN
PERSON( NAME(‘Joe’) ) FOOD_ITEM( NAME(‘This egg’) )
PERSON( NAME(‘Khadija’) ) FOOD_ITEM( NAME(‘This souffle’) )
PERSON( NAME(‘Juan’) ) FOOD_ITEM( NAME(‘This fajita’) )
PERSON( NAME(‘Kha’) ) FOOD_ITEM( NAME(‘This bowl of Pho’) )
PERSON( NAME(‘Cliff’) ) FOOD_ITEM( NAME(‘This plate of Thai food with a 5-star Thai-spicy rating’) )

If we think of the intransitive and transitive verbs ‘eats’ as really being the same verb on the semantic level (though it is not clear to me that they are the same), ‘Joe eats’ would be ‘Joe eats something’.  We can derive the corresponding tuple from  the EATS relation first by projecting on the attribute PERSON_EATING:

EATS(1)
PERSON_EATING FOOD_ITEM_EATEN
PERSON( NAME(‘Joe’) ) FOOD_ITEM( NAME(‘This egg’) )
PERSON( NAME(‘Khadija’) ) FOOD_ITEM( NAME(‘This souffle’) )
PERSON( NAME(‘Juan’) ) FOOD_ITEM( NAME(‘This fajita’) )
PERSON( NAME(‘Kha’) ) FOOD_ITEM( NAME(‘This bowl of Pho’) )
PERSON( NAME(‘Cliff’) ) FOOD_ITEM( NAME(‘This plate of Thai food with a 5-star Thai-spicy rating’) )

Then by doing a RESTRICT on Joe:

EATS(2)
PERSON_EATING FOOD_ITEM_EATEN
PERSON( NAME(‘Joe’) ) FOOD_ITEM( NAME(‘This egg’) )
PERSON( NAME(‘Khadija’) ) FOOD_ITEM( NAME(‘This souffle’) )
PERSON( NAME(‘Juan’) ) FOOD_ITEM( NAME(‘This fajita’) )
PERSON( NAME(‘Kha’) ) FOOD_ITEM( NAME(‘This bowl of Pho’) )
PERSON( NAME(‘Cliff’) ) FOOD_ITEM( NAME(‘This plate of Thai food with a 5-star Thai-spicy rating’) )

The existence of verbs that are sometimes transitive, sometimes intransitive  is what motivated Santorini’s distinction between semantic and syntactic arguments to a verb.

Although I have labored over making this distinction for an embarrassing amount of time, it becomes quite easy to make once one has the notion of a SELECTOR available as a conceptual tool.

I’d like to mention as a final note that possibly we should think of the arguments of eats as always already nested inside the selectors PERSON and FOOD_ITEM; in other words, the names are always transparent, so to speak, letting us see through them the persons and food items, the semantic arguments, named.  It is only under special circumstances — say when the transparent denoting function of the sentence breaks down … maybe one has been staring at the sentence for too long — that the selectors PERSON and FOOD_ITEM get stripped away and we see the names, the syntactic arguments, doing the denoting.  (The sentences always seem to be breaking down this way for C.J. Date in his article “SOME OPERATORS ARE MORE EQUAL THAN OTHERS” in his LOGIC AND DATABASES:  THE ROOTS OF RELATIONAL THEORY.  I get the funny feeling that for him a sentence or expression functions normally at first, but when he stares at it too long it suddenly loses its transparency and becomes an opaque relation between names.  See pages 42 and 45, and see if you get the same impression.)  This final note has been brought to you by the balefully compromised spirit of Martin Heidegger, which was nagging me as I wrote the above.

And now, in the spirit of Plato’s SYMPOSIUM, I would like to picture something a little less dry than the pictures of Relations shown above.  Today it is Kellan Lutz who is serving as my stepping stone, first, to the Relational Algebra, then, finally, to the form of Beauty itself:

(Rapturous sigh.  How can one live in this world when there is so much beauty in it?)

Update 12/16/2012:  Corrected some errors in the names of some of the Relations; tried to improve the flow of the writing.

## Selectors And Semantic vs. Syntactic Arguments

In case anyone wonders (“feel free to come to the point when you finally decide what it is”), the point of the following ramblings is to arrive at a place where I can make a distinction between semantic arguments and syntactic arguments.  The point of making this distinction will become clear (or not) in a later post.  Making the distinction is part of my attempting to put in my own words the argument that Tagalog lacks a subject.

In the previous post, I argued (or claimed, or made the completely unsupported, nay, spurious assertion, as the case may be) that the semantics of Maganda si Robert Pattinson can also be given by the following statement in the database language Tutorial D:

GORGEOUS_EQUALS_GORGEOUS{THIS_ONE, THAT_ONE} where THIS_ONE = PERSON(NAME(‘Robert Pattinson’))

This statement includes the Selector PERSON(NAME(‘Robert Pattinson’)).  Let me unpack a bit what this is. Before I start, I’d like to point out that I THINK that it is  legal in Tutorial D to nest one selector inside another…

NAME(‘Robert Pattinson’) is a operator or function that takes the string ‘Robert Pattinson’ and selects one and only one name.  I will take the concept ‘selects’ as primitive here.  Any implementation of this selector in a physical computer would involve shuffling around ones and zeros until the computer spits out, i.e., returns, one member of the set NAME.  NAME would include strings, but subject to certain limitations.  For example, I assume a  name would have to be, at least, less than 1 billion characters long.  NAME would also include more than strings (that is, representations of text):  a name can be selected by a sound.  So NAME(<<some representation of a sound>>) could also select the name Robert Pattinson. (The reader will notice that I have not yet decided on how to represent, in the absence of a formal selector, a name as opposed to a string as opposed to the person himself…)

PERSON(NAME(Robert Pattinson)) would take the name selected by NAME(‘Robert Pattinson’) and return a member of the set PERSONS, i.e., Robert Pattinson himself.  I don’t know how a computer would implement this operator, but a human being would be implementing that operator in the following type of circumstance:  say, I am sitting in a restaurant.  Someone in the table next to me says:

I hereby officially declare myself to belong to Team Edward because Robert Pattinson is just too gorgeous.

One part of that utterance, the part that I hear as the word ‘Robert Pattinson’, is the end point of a long causal chain that begins, say, when the parents of Robert Pattinson, after endless wrangling and indecision, finally agree to call their baby ‘Robert’; the doctor in the Maternity Ward crosses out the ‘baby boy’ in ‘baby boy Pattinson’ and writes in  ‘Robert’ on the birth certificate (call this the ‘baptismal event’) … endless events … a director or producer chooses the person named by ‘Robert Pattinson’ to play Edward Cullen in TWILIGHT … endless events…the person sitting at the table next to me sees TWILIGHT…he reads in a magazine he buys at the supermarket that Robert Pattinson played the part of Edward Cullen…he emits a set of soundwaves at the table next to me, which in turn trigger God-only-knows what processes in my brain, until I hear ‘…Robert Pattinson….’  That entire causal chain, ending up in the wetware of my brain, selects the person Robert Pattinson.  THAT’s the implementation of the selector PERSON(NAME(<<some representation of certain sound waves>>)).  Speaking metaphorically and a bit picturesquely, the selector spits out, or returns, Robert Pattinson himself, the flesh-and-blood Robert Pattinson who lives in (I would say ‘Valencia, California’, but that is where Taylor Lautner lives)…. Speaking literally, the selector selects Robert Pattinson himself.

(See Saul Kripke, who apparently never explicitly endorsed this causal theory of reference aka selection.  Gareth Evans would apparently deem this theory, as stated by me, to be naive, but it seems perfectly intuitive to me.)

Invocations of selectors produce literals (more accurately, I guess, are literals).  So whatever else Robert Pattinson himself may be, he is a literal value.

Let me take the liberty of allowing selector invocations as arguments supplied to the parameters of functions, so that we can replace x with the argument PERSON(NAME(‘Robert Pattinson’)) in the function x EQUALS x to produce a true proposition.  Below, I have identified, ala Chisholm, propositions with states of affairs in the world:  here, with Robert Pattinson being identical with Robert Pattinson.  This proposition gives us the semantics of the utterance “Robert Pattinson equals Robert Pattinson.”

I will therefore call the invocation of PERSON(NAME(‘Robert Pattinson’)) a semantic argument.  By contrast, the invocation of NAME(‘Robert Pattinson’), occuring inside an utterance, spoken or written, is a syntactic argument.  In this way, I make sense of the semantic arguments vs. syntactic arguments distinction I puzzled over in a previous post.

I do not know, of course, whether this is the distinction that Beatrice Santorini wanted to make.

I will end by making another homage to Plato’s SYMPOSIUM, according to which interest in Robert Pattinson, Taylor Lautner, Kellan Lutz et al ultimately leads to interest in the Relational Algebra, and from there, to the Form of Beauty itself:

Wow, I love that slightly-unshaven look…(the reader may  hear a rapturous sigh…)

Now, having briefly lapsed into a lower form of eros, I will go back to eros for the Relational Algebra in connection with Semantics….

Update:  After hitting the publish button, I saw this quote from the first Jewish Prime Minister of Great Britain:

The best way to become acquainted with a subject is to write a book about it.

Benjamin Disraeli

Or blog about it at length.

## Some Gorgeous One Equals Robert Pattinson

Below, I have argued that (or, more accurately, attempted to provoke the Aha Erlebniss that)  the following three Tagalog sentences:

Titser ang babae.

Maganda ang lalaki.

Umalis ang babae.

…have as their most literal translation something like the following:

Some teacher one  equals the woman.

Some gorgeous one equals the man.

Some having left one equals the woman.

How would these sentences be expressed in the Relational Algebra?  Let me try to express “Some beautiful one equals Robert Pattinson” (I am switching from Team Jacob to Team Edward for the moment) in the Relational Algebra.  (Notice I am switching from ‘the man’ to ‘Robert Pattinson’.  Can I get away with this?)

A relation is a set of ordered pairs formed by taking the Cartesian Product of two sets, not necessarily distinct, and obtaining a subset (possibly identical with the entire set) of the set of ordered pairs.  Let’s form a particular EQUALS relation, GORGEOUS_EQUALS_GORGEOUS, by taking the Cartesian Product of the set GORGEOUS with the set GORGEOUS, then take from that Product the set of all those ordered pairs in which each member of the pair is identical with the other.  So that the relation can be more easily manipulated (conceptually), add in all the stuff necessary to turn this relation into a database relation, complete with tuples and attributes and all that good stuff.

GORGEOUS_EQUALS_GORGEOUS(0)
THIS_ONE THAT_ONE
Robert Pattinson Robert Pattinson
Taylor Lautner Taylor Lautner
Kellan Lutz Kellan Lutz
Ashton Kutchner Ashton Kutchner

Restrict GORGEOUS_EQUALS_GORGEOUS to just the Robert Pattinson tuple:

GORGEOUS_EQUALS_GORGEOUS{THIS_ONE, THAT_ONE} where THIS_ONE = PERSON(NAME(‘Robert Pattinson’))
More attention needs to be paid to the literal selector PERSON(NAME(‘Robert Pattinson’)).  Will my worries about this, unarticulated here, eventually blow up in my face?

To get the relation pictured by:

GORGEOUS_EQUALS_GORGEOUS(1a)
THIS_ONE THAT_ONE
Robert Pattinson Robert Pattinson

Now project on the attribute THAT_ONEi in addition to performing the RESTRICT:

GORGEOUS_EQUALS_GORGEOUS{THAT_ONE} where THIS_ONE = NAME(‘Robert Pattinson’)

To get the relation pictured by:

GORGEOUS_EQUALS_GORGEOUS(1)
THAT_ONE
Robert Pattinson

(Imagine the surrounding white space as regnant with the matrix from which this relation sprints, namely, the base relation GORGEOUS_EQUALS_GORGEOUS.)

The above relation expresses the proposition that is also expressed in English as:

Some gorgeous one equals Robert Pattinson.

and that is also expressed in Tagalog, I claim, as:

Maganda si Robert Pattinson.

So:

Maganda si Robert Pattinson.

Some gorgous one equals Robert Pattinson

have the same semantics.  (Well, would have the exact same semantics if ‘gorgeous’ were exactly equivalent to ‘maganda’, which of course may be doubtful.)

Now, in the spirit of Plato’s Symposium (eros for gorgeous  young men inspires eros for the Relational Algebra and the Predicate Logic, and from there to the Form of Beauty itself), let me picture some of the members of that set which inspires my forays into the Relational Algebra.  These pictures are a bit more colorful than the pictures of relations shown above.

Do I really have to choose between Team Edward and Team Jacob?

12/04/2012:  Updated to remove problematic assertions about the semantics of ‘is’.